Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Carnegie Science's Broad Branch Road campus in the fall with brilliant leaves
    Public Program

    Inaugural Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
In this second of a two-paper series, we present a detailed analysis of three Hubble Space Telescope observations taken & SIM;2-4 yr post-discovery, examining the evolution of a UV-bright underlying source at the precise position of AT 2018cow. While observations at & SIM;2-3 yr post-discovery revealed an exceptionally blue (L & nu; & PROP; & nu; 1.99) underlying source with relatively stable optical brightness, fading in the near-UV was observed at year 4, indicating flattening in the spectrum (to L & nu; & PROP; & nu; 1.64). The resulting spectral energy distributions can be described by an extremely hot but small blackbody, and the fading may be intrinsic (cooling) or extrinsic (increased absorption). Considering possible scenarios and explanations, we disfavor significant contributions from stellar sources and dust formation, based on the observed color and brightness. By comparing the expected power and the observed luminosity, we rule out interaction with known radio-producing circumstellar material (CSM) as well as magnetar spin down with B & SIM; 1015 G as possible power sources, though we cannot rule out the possible existence of a denser CSM component (e.g., a previously ejected hydrogen envelope) or a magnetar with B & LSIM; 1014 G. Finally, we find that a highly inclined precessing accretion disk can reasonably explain the color, brightness, and evolution of the underlying source. However, a major uncertainty in this scenario is the mass of the central black hole (BH), as both stellar-mass and intermediate-mass BHs face notable challenges that cannot be explained by our simple disk model, and further observations and theoretical works are needed to fully constrain the nature of this underlying source.
View Full Publication open_in_new
Profile picture of Nondh Panithanpaisal, a postdoctoral fellow at Carnegie

Nondh Panithanpaisal

Carnegie/Caltech Fellow

CASE Summer Stars students working in the lab on a group activity.
October 10, 2023

Carnegie Science partners with The Child Center of NY on mental health awareness campaign

Abstract
The isotopic analysis of moderately volatile elements such as K have gained significant interest in recent years as they possess the potential to help us better understand solar system formation. Even so, the precise K isotopic composition of CI chondrites, the most chemically primitive chondrite, has remained elusive. As the K elemental composition of CI chondrites matches well with the solar photosphere, it is possible that their K isotopic composition represents the solar system initial value. Here, we investigate the CI chondrite K isotopic composition in order to determine the precise CI chondrite, and thus possibly solar system initial, & delta;41K value. In addition, we investigate the K isotope compositions of several other chondrite groups, evaluate all available chondrite K isotope data together, and use these data along with data from a range of other isotope systems to assess if nucleosynthetic variations, volatility related processes, or parent body processes can best explain the range of isotope variations. The & delta;41K composition of all nine CI chondrite pieces analyzed in this study show limited variation, ranging from -0.29%o to -0.17%o. When combined with the previous CI analysis, an overall mean CI & delta;41K value of -0.21 & PLUSMN; 0.05%o (2SE) is obtained. This K isotope composition is distinct from the Bulk Silicate Earth value of -0.43 & PLUSMN; 0.17%o (2SD), heavier than almost all other chondrite groups, and may represent the solar system initial K isotope composition. When comparing all chondrites broadly, ordinary chondrites show the lightest mean K isotope composition of -0.76 & PLUSMN; 0.06%o (H = -0.71 & PLUSMN; 0.12%o, L = -0.77 & PLUSMN; 0.04%o, LL = -0.81 & PLUSMN; 0.12%o), enstatite chondrites the middle composition of -0.39 & PLUSMN; 0.11%o (EH = -0.34 & PLUSMN; 0.05%o, EL = -0.45 & PLUSMN; 0.20%o), and carbonaceous chondrites the heaviest composition of -0.31 & PLUSMN; 0.08%o. For the carbonaceous chondrite groups CK (-0.42 & PLUSMN; 0.11%o), CR (-0.46 & PLUSMN; 0.05%o), and CV (-0.38 & PLUSMN; 0.07%o) chondrites show lighter & delta;41K compositions compared to CO (-0.20 & PLUSMN; 0.10%o), CM (-0.23 & PLUSMN; 0.11%o), and CI (-0.21 & PLUSMN; 0.05%o) chondrites. When these K isotope group averages are compared against the averages for other mass-dependent moderately volatile element isotope systems (& delta;87Rb, & delta;66Zn, & delta;71Ga, & delta;128Te) and mass-independent isotope systems (& epsilon;54Cr, & epsilon;64Ni, & epsilon;50Ti, & UDelta;17O, & epsilon;40K, and & epsilon;66Zn,), a range of correlations are observed. Across all chondrite groups & delta;41K shows correlations with & delta;87Rb, & delta;66Zn, and & delta;71Ga, and correlations with & epsilon;54Cr, & epsilon;64Ni, & epsilon;50Ti, & epsilon;40K, and & epsilon;66Zn. When comparing the CCs only, correlations are observed between & delta;41K and all four of the other moderately volatile elements assessed, while the mass-independent isotope systems show no strong correlations. Regarding the K isotope variations, these observations, along with other textural and chemical data, can be best explained by inherited isotopic variations form different precursor reservoirs (the cause of which is difficult to conclusively determine, though most likely related to the NC-CC dichotomy), and volatility related fractionation processes for the carbonaceous chondrite groups (most likely due to component mixing).
View Full Publication open_in_new
Abstract
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4 gamma, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4 gamma is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony coral evolution. Our expression studies show that SLC4 gamma, but not the closely related and apparently ancestral SLC4 gamma, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4 gamma are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4 gamma mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4 gamma for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.
View Full Publication open_in_new
Abstract
In order to characterize rhenium transport via infiltration of fluids in the Earth's interior, the solubility and solution mechanisms of ReO2 in aqueous fluids were determined to 900 & DEG;C and about 1710 MPa by using an externally-heated hydrothermal diamond anvil cell. In order to shed light on how Re solubility and solution mechanisms in aqueous fluids can be affected by interaction of Re with other solutes, compositions ranged from the comparatively simple ReO2-H2O system to compositionally more complex Na2O-ReO2-SiO2-H2O fluids. Fluids in the ReO2-SiO2-H2O, SiO2-H2O, Na2O-SiO2-H2O, and Na2O-ReO2-H2O systems also were examined. The presence of Na2O enhances the ReO2 solubility so that in Na2O-ReO2-H2O fluids, for example, Re solubility is increased by a factor of 10-15 compared with the Re solubility in Na2O-free ReO2-H2O fluids. The SiO2 component in ReO2-SiO2-H2O causes reduction of ReO2 solubility compared with ReO2-H2O fluids. The ReO2 solubility in the Na-bearing Na2O-ReO2-SiO2-H2O fluids is greater than that in fluids in both the ReO2-H2O and ReO2-SiO2-H2O systems. Rhenium is dissolved in aqueous fluid as ReO4-complexes with Re in fourfold coordination with oxygen. Some, or all, of the oxygen in these complexes is replaced by OH-groups depending on whether Na2O also is present. It is proposed that during dehydration of hydrated subduction zone mineral assemblages in the upper mantle, the alkali/alkaline earth ratio of the source of the released aqueous fluid affects the extent to which Re (and other HFSE) can be transported into an overlying peridotite mantle wedge. The infiltration of such fluids will, in turn, affect the Re content (and Re/Os ratio) of magma formed by partial melting of this peridotite wedge.
View Full Publication open_in_new
Abstract
The Maaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Seitah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Maaz formation and the Content member of the Seitah formation. We conclude that the Maaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Maaz formation rocks exhibit some of the lowest Mg# (=molar 100 x MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Maaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Seitah formation. The study of returned Maaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.
View Full Publication open_in_new
Abstract
Light organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network. Using available topological, open chromatin, and transcriptomic data, we explore the regulatory landscape around the four transcription factors as well as genes associated with LO and shared LO/eye expression. This analysis revealed several closely associated and putatively co-regulated genes. Comparative genomic analyses identified distinct evolutionary origins of these putative regulatory associations, with the DAC locus showing a unique topological and evolutionarily recent organization. We discuss different scenarios of modifications to genome topology and how these changes may have contributed to the evolutionary emergence of the light organ.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 171
  • Page 172
  • Page 173
  • Page 174
  • Current page 175
  • Page 176
  • Page 177
  • Page 178
  • Page 179
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025