Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    “Scientists are my best friends,” wildlife photographer Frans Lanting said during a retrospective program at Carnegie’s Washington, DC, headquarters last week.

    He added that without the ability to learn from researchers and generate ideas for new images with them, his work would not hold the same power. “It’s like sculpting,” he said, speaking of these collaborations and conversations.

    Watch This Video

Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply. For many plants, even a small increase in average temperature can profoundly affect their growth and development. New research uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. 

Explore this Story

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. 

Explore this Story

Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology. Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, until now one of the most-promising forms of germanium for practical applications, called ST12, had only been created in tiny sample sizes that were too small to definitively confirm its properties.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at increasing students’ science knowledge and positive attitudes about science. Younger students had the greatest attitude changes. The study covered five years and tested students before and after the one-week BioEYES program.

Explore this Story
Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass...
Explore this Project
The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of...
Explore this Project
Carnegie will receive Phase II funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables individuals worldwide to test bold ideas to address persistent health and development challenges. Department of Plant Biology Director Wolf...
Explore this Project
Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our...
Meet this Scientist
Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature...
Meet this Scientist
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and...
Meet this Scientist

Explore Carnegie Science

January 17, 2017

Washington, D.C.—Global Ecology NSF Fellow Mary Whelan has been honored with Carnegie’s fifth Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the department directors and are chosen by the Office of the President. Whelan was awarded the prize for both her scientific and cultural contributions to the Carnegie community.

Whelan’s work on atmospheric trace gas biogeochemistry shows an enormous breadth of skills, knowledge, and curiosity. She asks both “how do we measure it?” and “what does it tell us about the world?”—two scientific questions that are increasingly “siloed”  in the environmental sciences. She spends hours of

January 13, 2017

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. The findings are published in Nature Communications.

Overall, there is a lot about carbon chemistry that takes place below Earth’s crust that scientists still don’t understand. In particular, the amount of carbon in the Earth’s mantle has been the subject of hot debate for decades. This topic is of interest

Carnegie Science, Carnegie Institution for Science, Carnegie Institution
January 3, 2017

Washington, DC—Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.

Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, one of the most-promising forms of germanium for practical applications, called ST12, has only been created in tiny sample sizes—too small to definitively confirm its properties.

“Attempts to experimentally or theoretically pin down ST12-germanium’s characteristics produced extremely varied results, especially in terms of its electrical conductivity,” said

December 26, 2016

Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She was a retired staff astronomer at the Carnegie Institution’s Department of Terrestrial Magnetism in Washington, D.C.

“Vera Rubin was a national treasure as an accomplished astronomer and a wonderful role model for young scientists,” remarked Carnegie president Matthew Scott. “We are very saddened by this loss.”

In the 1960s, Rubin’s interest in how stars orbit their galactic

No content in this section.

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

The Fan laboratory studies the molecular mechanisms that govern mammalian development, using the mouse as a model. They use a combination of biochemical, molecular and genetic approaches to identify and characterize signaling molecules and pathways that control the development and maintenance of the musculoskeletal and hypothalamic systems.

The musculoskeletal system provides the mechanical support for our posture and movement. How it arises during embryogenesis pertains to the basic problem of embryonic induction. How the components of this system are repaired after injury and maintained throughout life is of biological and clinical significance. They study how this system is

Established in June of 2016 with a generous gift of $50,000 from Marilyn Fogel and Christopher Swarth, the Marilyn Fogel Endowed Fund for Internships will provide support for “very young budding scientists” who wish to “spend a summer getting their feet wet in research for the very first time.”  The income from this endowed fund will enable high school students and undergraduates to conduct mentored internships at Carnegie’s Geophysical Laboratory and Department of Terrestrial Magnetism in Washington, DC starting in the summer of 2017.

Marilyn Fogel’s thirty-three year career at Carnegie’s Geophysical Laboratory (1977-2013), followed by four years at the University of California,

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish Drosophila as

Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of glucose, sucrose, ammonium, amino acid, and nucleotide transport in plants.

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell’s outer membrane, which seals and protects all living cells, to the cell’s interior. These transported molecules include sugars, which can be used to fuel growth or to respond to chemical signals of

Geochemist and director of Terrestrial Magnetism, Richard Carlson, looks at the diversity of the chemistry of the early solar nebula and the incorporation of that chemistry into the terrestrial planets. He is also interested in questions related to the origin and evolution of Earth’s continental crust.

  Most all of the chemical diversity in the universe comes from the nuclear reactions inside stars, in a process called nucleosynthesis. To answer his questions, Carlson developes novel procedures using instruments called mass spectrometers to make precise measurements of isotopes--atoms of an element with different numbers of neutrons--of Chromium (Cr), strontium (Sr), barium ( Ba

Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and temperature. He particularly focuses on properties of materials under extreme conditions such as high pressure and high temperature. This research applies to various topics and problems in geophysics and technological materials.

Some of his work focuses on understanding the behavior of high-technology materials called ferroelectrics—non-conducting crystals with an electric dipole moment similar