Washington, DC— Brown dwarfs are sometimes called failed stars. They’re stars’ dim, low-mass siblings and they fade in brightness over time. They’re fascinating to astronomers for a variety of reasons, but much about them remains unknown. New work from a Carnegie-led team reports the distances of a...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Now, using a series of multi-wavelength surveys, astronomers, including Carnegie’s Mark Seibert, Barry Madore and Jeff Rich, have discovered that it is really a colossal Giant Low Surface Brightness disk galaxy that rivals the champion of this elusive class—a galaxy known as Malin 1. Malin 1 is some 7 times the diameter of the Milky Way.

    Explore this Story
  • Youtube URL: 

    Carnegie’s Mark Seibert, Barry Madore, Jeff Rich, and team have discovered that what was believed since the 1960s to be a relatively boring, small elliptical galaxy dubbed UGC 1382 is really a colossal Giant Low Surface Brightness disk galaxy. Watch a series of multi-wavelength images that the team used to reveal this behemoth.

    Watch This Video

Stanford, CA— With a growing world population and a changing climate, understanding how agriculturally important plants respond to drought is crucial. New work from a team led by Carnegie’s José Dinneny discovers a strategy employed by grasses in drought conditions that could potentially be harnessed to improve crop productivity.

Explore this Story

Washington, DC— New work from Carnegie’s Peter Driscoll suggests Earth’s ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two. It is published in Geophysical Research Letters.

Explore this Story

Washington, DC— Hydrogen is the most-abundant element in the universe. It’s also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so much we have to learn about hydrogen.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD— As we age, the function and regenerative abilities of skeletal muscles deteriorate, which means it is difficult for the elderly to recover from injury or surgery. New work from Carnegie’s Michelle Rozo, Liangji Li, and Chen-Ming Fan demonstrates that a protein called b1-integrin is crucial for muscle regeneration. Their findings, published by Nature Medicine, provide a promising target for therapeutic intervention to combat muscle aging or disease.

Explore this Story
The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get...
Explore this Project
Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young....
Explore this Project
Fifty years ago, Americans led the world in math and science, claiming some of the most important inventions and technological breakthroughs of the 20th century.  Today, American 15-year-olds rank 25th in math compared to their peers worldwide.  Math for America strives to reclaim America’s...
Explore this Project
Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
Peter Driscoll studies the evolution of Earth’s core and magnetic field including magnetic pole reversal. Over the last 20 million or so years, the north and south magnetic poles on Earth have reversed about every 200,000, to 300,000 years and is now long overdue. He also investigates the Earth’s...
Meet this Scientist

Explore Carnegie Science

July 19, 2016

Washington, DC— It is imperative that society learn more about how climate change contributes to episodic and very severe water quality impairments, such as the harmful algal bloom that caused Florida to declare a state of emergency earlier this month, says Carnegie’s Anna Michalak in a commentary published by Nature.

“The scientific community has made remarkable progress in understanding the role of climate in the occurrence and intensity of droughts, storms, and other extreme events relating to water quantity,” Michalak writes. “It is time for a similar examination of extremes in water quality.”

These severe and periodic water quality issues are a growing problem around

Carnegie, Carnegie Science, Carnegie Institution for Science, plant biology, crown roots, Jose Sebastian
July 11, 2016

Stanford, CA— With a growing world population and a changing climate, understanding how agriculturally important plants respond to drought is crucial. New work from a team led by Carnegie’s José Dinneny discovers a strategy employed by grasses in drought conditions that could potentially be harnessed to improve crop productivity. It is published by Proceedings of the National Academy of Sciences.

Plants obtain most of their water through their roots. But there are different kinds of roots in different kinds of plants. This study focused on grasses, a family that includes maize, sorghum, and sugarcane and also represents key species used for human food, animal feed, and renewable

July 11, 2016

Pasadena, CA—Astronomers have believed since the 1960s that a galaxy dubbed UGC 1382 was a relatively boring, small elliptical galaxy. Ellipticals are the most common type of galaxy and lack the spiral structure of disks like the Milky Way we call home. Now, using a series of multi-wavelength surveys, astronomers, including Carnegie’s Mark Seibert, Barry Madore and Jeff Rich, have discovered that it is really a colossal Giant Low Surface Brightness disk galaxy that rivals the champion of this elusive class—a galaxy known as Malin 1. Malin 1 is some 7 times the diameter of the Milky Way. The research is published in the Astrophysical Journal.

Giant Low Surface Brightness galaxies

July 6, 2016

Pasadena, CA— The Astronomical Society of the Pacific (ASP) has announced that the Carnegie Observatories’ postdoctoral associate Rachael Beaton will receive the 2016 Robert J. Trumpler Award. In addition, the Observatories’ Carnegie-Princeton Fellow Eduardo Bañados received the Otto Hahn Medal from Germany’s Max Planck Society. Beaton’s Trumpler Ward is for a recent Ph.D. thesis “considered unusually important to astronomy.” The Otto Hahn Medal honors young researchers for outstanding scientific achievements. 

Beaton studies the structure of galaxies to probe their evolution and formation. In particular she investigates the outer halos of galaxies because they are billions of

Clathrate Snowflake -- Image credit: Timothy Strobel, Carnegie Institution for Science, Geophysical Laboratory

This image was selected as our holiday card for 2012. The snowflake is based on a new structure of “filled” ice discovered recently at the Geophysical Laboratory. Hydrogen-bonded water molecules (red) form a network of channels that trap hydrogen molecules (green) inside. This structure forms when mixtures of water and hydrogen are compressed above 5000 atmospheres at moderately cool temperatures (below 10 °C).

Baltimore, MD—Staff associate Christoph Lepper, at Carnegie’s Department of Embryology, is one of 10 recipients of the NIH Director’s Early Independence Awards. This is the first year of the awards. Lepper will receive a prize of $250,000 per year for five years to carry out his creative research program as an independent investigator. The prize is designed to launch exceptional young scientists into independent positions directly out of graduate school.

Lepper received the award for his research on the biology of skeletal muscle. Contrary to standard belief, he discovered while a graduate student in Chen-Ming Fan’s lab at Embryology that genes needed by muscle stem cells in the

Washington, DC—Eating meat contributes to climate change, due to greenhouse gasses emitted by livestock. New research finds that livestock emissions are on the rise and that beef cattle are responsible for far more greenhouse gas emissions than other types of animals. It is published by Climatic Change.

Carbon dioxide is the most-prevalent gas when it comes to climate change. It is released by vehicles, industry, and forest removal and comprises the greatest portion of greenhouse gas totals. But methane and nitrous oxide are also greenhouse gasses and account for approximately 28 percent of global warming activity.

Methane and nitrous oxide are released, in part, by

Washington, D.C. — Carbon is the fourth-most-abundant element in the universe and takes on a wide variety of forms, called allotropes, including diamond and graphite. Scientists at Carnegie’s Geophysical Laboratory are part of a team that has discovered a new form of carbon, which is capable of withstanding extreme pressure stresses that were previously observed only in diamond. This breakthrough discovery will be published in Physical Review Letters.

The team was led by Stanford’s Wendy L. Mao and her graduate student Yu Lin and includes Carnegie’s Ho-kwang (Dave) Mao, Li Zhang, Paul Chow, Yuming Xiao, Maria Baldini, and Jinfu Shu. The experiment started with a form of carbon

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Until now, computer models have been the primary tool for estimating photosynthetic productivity on a global scale. They are based on estimating a measure for plant energy called gross primary production (GPP), which is the rate at which plants capture and store a unit of chemical energy as biomass over a specific time. Joe Berry was part of a team that took an entirely new approach by using satellite technology to measure light that is emitted by plant leaves as a byproduct of photosynthesis as shown by the artwork.

The plant produces fluorescent light when sunlight excites the photosynthetic pigment chlorophyll. Satellite instruments sense this fluorescence yielding a direct

The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed in October 2014 through a partnership between Carnegie Science’s Carnegie Academy for Science Education and the DC Office of the State Superintendent of Education.  Over 200 community partners have already engaged in the effort to enhance STEM learning opportunities for DC students and teachers within the classroom, outside of the classroom and in the workplace.

This past year, the

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere structure,

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She integrates her data with

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

 

Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to produce and secrete hormones. Rather, each plant cell has the ability to generate hormones. Another difference is that animal cells typically have receptor molecules that respond to select steroids located within a cell's nucleus. In plants, steroid receptors are anchored to the outside surface of a cell’s outer membrane—the membrane that delineates a cell as a single unit.

Zhiyong Wang