Washington, DC— An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool red parent star every 11 days and has a temperature...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Quasars are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They shine so brightly that they are often referred to as beacons and are among the most-distant objects we can currently study. A team has discovered 63 new quasars from when the universe was only a billion years old, almost doubling the number of ancient quasars previously known.

    Explore this Story
  • Youtube URL: 

    Learning about ‪#photosynthesis is fun! Life as we know it on Earth couldn't exist without this amazing process. And what better way to understand and appreciate everything that plants and algae do for us than through this amazing song from Carnegie Plant Biology and Jonathan Mann?
    Jonathan Mann with Liz Freeman Rosenzweig and 3 others.

    Do the Photosynthesis dance! It's easy and fun!

    I made this video and song with the very fine plant biologists at the Jonikas lab! They study algae!

    It was funded by the NSF.

    Watch This Video

Stanford, CA—The Howard Hughes Medical Institute (HHMI) and the Simons Foundation have awarded José Dinneny, of Carnegie’s Department of Plant Biology an HHMI-Simons Faculty Scholar grant. He is one of 84 scientists chosen out of some 1,400 applicants in a new program that the Howard Hughes Medical Institute (HHMI), the Simons Foundation, and the Bill & Melinda Gates Foundation have created.

Explore this Story

When a star is young, it is often still surrounded by a primordial rotating disk of gas and dust from which planets can form. Astronomers like to find such disks because they might be able to catch the star partway through the planet-formation process, but it’s highly unusual to find such disks around brown dwarfs or stars with very low masses. New work has discovered four new low-mass objects surrounded by disks. Because they exist at the lower limit of what defines a star and still have disks, these objects could teach scientists about both stellar and planetary evolution.

Explore this Story

Scientists have looked for different ways to force hydrogen into a metallic state for decades. Metallic hydrogen is a holy grail for materials science because it could be used for superconductors, materials that have no resistance to the flow of electrons, increasing electrical efficiency many times over. For the first time researchers, led by Carnegie’s Viktor Struzhkin, have experimentally produced a new class of materials blending hydrogen with sodium that could alter the superconductivity landscape.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Washington, D.C.—  Zehra Nizami has been a graduate student and postdoc in Joe Gall’s lab at the Department of Embryology. She is the fourth recipient of the Postdoctoral Innovation and Excellence (PIE) Award, which are made through nominations from the department directors and chosen by the Office of the President. Her career at Embryology includes outstanding accomplishments in the three areas recognized by the PIE Award—science, education, and community service.

Explore this Story
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
CALL FOR PROPOSALS Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas. Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to...
Explore this Project
Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of...
Explore this Project
Capital Science Evening Lectures
Thursday, September 29, 2016 -
6:30pm to 7:45pm

Everything in nature is regulated—from the number of vital molecules found in our bloodstreams to the number of lions living on an African savanna. Over the past 50 years, two revolutions have...

Explore this Event
Capital Science Evening Lectures
Thursday, October 13, 2016 -
6:30pm to 7:45pm

KAVLI PRIZE LAUREATE LECTURE

Everyone learns in school that DNA is the genetic coding material  found in all organisms. However, the information storage capacity that...

Explore this Event
Special Events
Thursday, October 20, 2016 -
6:00pm to 8:00pm

(doors open at 5:30)

 

Dialogues with Nature - A Presentation by Photographer Frans Lanting

Hailed as one of the great photographers of our time, Frans...

Explore this Event
Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist
Ken Caldeira has been a Carnegie investigator since 2005 and is world renowned for his modeling and other work on the global carbon cycle; marine biogeochemistry and chemical oceanography, including ocean acidification and the atmosphere/ocean carbon cycle; land-cover and climate change; the long-...
Meet this Scientist

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Robin Dienel
September 26, 2016

Washington, DC— When a star is young, it is often still surrounded by a primordial rotating disk of gas and dust from which planets can form. Astronomers like to find such disks because they might be able to catch the star partway through the planet-formation process, but it’s highly unusual to find such disks around brown dwarfs or stars with very low masses. New work from a team led by Anne Boucher of Université de Montréal, and including Carnegie’s Jonathan Gagné and Jacqueline Faherty, has discovered four new low-mass objects surrounded by disks. The results will be published by The Astrophysical Journal.

Three of the four objects discovered by these researchers are quite

September 23, 2016

Washington, D.C.—  Zehra Nizami has been a graduate student and postdoc in Joe Gall’s lab at the Department of Embryology. She is the fourth recipient of the Postdoctoral Innovation and Excellence (PIE) Award, which are made through nominations from the department directors and chosen by the Office of the President. Her career at Embryology includes outstanding accomplishments in the three areas recognized by the PIE Award—science, education, and community service.

Nizami is co-discoverer of a new class of RNA molecules in amphibian egg cells called stable intronic sequence (sis) RNA. These sequences were not anticipated. It was believed for 35 years that introns—bits of DNA that

September 22, 2016

Baltimore, MD--BioEYES, the K-12 science education program headquartered at  Carnegie's Department of Embryology, was recognized with four other organizations by the General Motors Foundation, at the GM Baltimore Operations plant where they make transmissions. The BioEYES group was honored for their environmental education program, “Your Watershed, Your Backyard, a middle school learning experience that teaches students about stream ecology.GM has the most energy-efficient plants of any corporation in the world, for which they have won distinctions. BioEYE's Valerie Butler is second from left in the photo.
 

September 22, 2016

Washington, D.C.— Carnegie Science is excited to launch a new immersive program called Expedition Earth: Roads to Discovery. These experiences are more than just another lecture series (although, don't get us wrong, we still love our Capital Science Evening talks). The events will initiate attendees into the globetrotting lives of wildlife photographers, field scientists, and conservationists. But they will go beyond the auditorium to offer an interactive, inclusive experience. If you accept our invitation to adventure, you will get to hear daring tales of travel and then engage with the night's featured explorer, as well as with a range of fun games and activities. Did we mention the

September 29, 2016

Everything in nature is regulated—from the number of vital molecules found in our bloodstreams to the number of lions living on an African savanna. Over the past 50 years, two revolutions have occurred in the study of biology that help scientists understand how life is regulated on both of these scales. Dr. Carroll will discuss the discovery of the so-called "Serengeti Rules," which govern the number and kinds of animals and plants that are found in any given place, and talk about how these rules can be applied to restoring ecological health.

Dr. Sean B. Carroll, Professor, Molecular Biology and Genetics, University of Wisconsin; Vice President for Science Education, Howard Hughes

October 13, 2016

KAVLI PRIZE LAUREATE LECTURE

Everyone learns in school that DNA is the genetic coding material  found in all organisms. However, the information storage capacity that enables DNA to function in the world of biology can also be exploited to control the creation of 3D molecular structures. Dr. Seeman will talk about how DNA can be programmed readily to make objects, crystals, and even nanomechanical devices!

Dr. Nadrian C. Seeman, Margaret and Herman Sokol Professor of Chemistry, New York University

Co-hosted by the Carnegie Institution for Science with The Kavli Foundation, the Royal Embassy of Norway, and the Norwegian Academy of Science

October 20, 2016

(doors open at 5:30)

 

Dialogues with Nature - A Presentation by Photographer Frans Lanting

Hailed as one of the great photographers of our time, Frans Lanting has documented the natural world for more than four decades. From the Amazon to Antarctica, he uses his camera as a powerful tool for promoting a public understanding of the incredible scope of life on Earth. His stunning images convey a passion for nature and a sense of wonder about our living planet.

In this talk, Lanting will present his work as an ongoing dialogue with the natural world. He will explain how his images -- "conversations" with nature -- have been influenced by science and technology. Of

October 20, 2016

Please note that tickets are not required and seating is first come, first serve. Tickets from Eventbrite enable you to skip the sign-in process at the door, but do not guarantee a seat. 

Astronomers use large and increasingly more intricate telescopes to see further and further into the cosmos with ever-improving resolution.  These instruments have lead to the discovery of other planets around distant stars, some of which might be capable of supporting life.  But the key to life’s evolution on Earth is the development and persistence of plate tectonics, a planetary process that affects everything from the mineral composition of the continents on which we stand to the existence of

Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood. 

The Lepper lab studies the mechanics of these processes. overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after injury. The finding challenges the current course of research into muscular dystrophy, muscle

The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in 2021.

The GMT has a unique design that offers several advantages. It is a segmented mirror telescope that employs seven of today’s largest stiff monolith mirrors as segments. Six off-axis 8.4 meter or 27-foot segments surround a central on-axis segment, forming a single optical surface 24.5 meters, or 80 feet, in diameter with a total collecting area of 368 square meters. The GMT will

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

Approximately half of the gene sequences of human and mouse genomes comes from so-called mobile elements—genes that jump around the genome. Much of this DNA is no longer capable of moving, but is likely “auditioning”  perhaps as a regulator of gene function or in homologous recombination, which is a type of genetic recombination where the basic structural units of DNA,  nucleotide sequences, are exchanged between two DNA molecules to  repair  breaks in the DNA  strands. Modern mammalian genomes also contain numerous intact movable elements, such as retrotransposon LINE-1, that use RNA intermediates to spread about the genome. 

Given the crucial role of the precursor cells to egg

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations. About half of the sequence of the human and mouse genomes is derived from these mobile elements.  RNA interference (RNAi, codiscovered by Carnegie’s Andy Fire) and related processes are central to transposon control, particularly in egg and sperm precursor cells.  

The Bortvin lab, with colleagues

Alan Boss is a theorist and an observational astronomer. His theoretical work focuses on the formation of binary and multiple stars, triggered collapse of the presolar cloud that eventually made  the Solar System, mixing and transport processes in protoplanetary disks, and the formation of gas giant and ice giant protoplanets. His observational works centers on the Carnegie Astrometric Planet Search project, which has been underway for the last decade at Carnegie's Las Campanas Observatory in Chile.

While fragmentation is universally recognized as the dominant formation mechanism for binary and multiple stars, there are still major questions. The most important of these is the

Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic processes.

Shirey’s past, current, and future studies reflect the diversity of continental rocks, encompassing a range of studies that include rocks formed anywhere from the deep mantle to the surface crust. His work spans a wide range of geologic settings such as volcanic rocks in continental rifts (giant crustal breaks where continents split apart), ancient and present subduction zones

Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems.

Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation. Young disks contain the raw materials for building planets and the ultimate architecture of planetary systems depends on how these raw materials are distributed, what the balance of different elements and ices is within the gas and dust, and how fast the disks dissipate.

Weinberger uses a variety of observational techniques and facilities, particularly ultra-high spatial-