Michael Walter Begins Tenure as Geophysical Laboratory Director

Experimental petrologist Michael Walter is now the eighth director of Carnegie’s Geophysical Laboratory. We will officially welcome him to Washington on May 9 when he will give a public talk called "Deep Earth Through a Diamond Looking Glass."   

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    In honor of Women's History Month, we're revisiting some discussions we shared with scientific experts from a variety of disciplines who visited our flagship building in Washington, DC, as part of our Capital Science Evening series of public programming. 

    Watch This Video

Pasadena, CA—Pomona College junior and returning Carnegie Observatories intern Sal Fu was awarded a Barry M. Goldwater Scholarship in recognition of her academic and research success and to support her continued “academic study and research in the fields of science, mathematics, and engineering.” Fu has participated in the Carnegie Summer Undergraduate Research program over the past two summers, working with staff astronomer Josh Simon studying dwarf galaxies and streams of stars surrounding our Milky Way using data from the Sloan Digital Sky Survey.

Explore this Story

A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it. 

Explore this Story

Last week, scientists and staff from Carnegie’s Las Campanas Observatory volunteered for Astroday 2018 at a 170-year-old school in the nearby city of Las Serena, the Colegio Seminario Conciliar.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Four new Carnegie Venture Grants have been awarded, following the second call for proposals of 2017. Projects funded by Carnegie Science Venture Grants ignore conventional boundaries by bringing together researchers from different backgrounds with fresh eyes to explore new questions. Each grant provides $100,000 for projects that are likely to grow in unexpected ways. Proposals are chosen by the President’s office.

Explore this Story
  • Degraded forests play a crucial role in the future survival of Bornean elephants. A new study from the Carnegie Airborne Observatory team paired GPS tracking data for 29 elephants with airborne laser-based images of forests in Sabah, Malaysia, on the island of Borneo. By creating high-resolution, three-dimensional maps of forest canopy height and structure, Greg Asner, Luke Evans, and their research partners found that forests of surprisingly short stature are ideal for elephants.

     

     

    Explore this Story
DC Stem Network
The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed...
Explore this Project
Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii....
Explore this Project
Carnegie's Paul Butler has been leading work on a multiyear project to carry out the first reconnaissance of all 2,000 nearby Sun-like stars within 150 light-years of the solar system (1 lightyear is about 9.4 trillion kilometers). His team is currently monitoring about 1,700 stars, including 1,000...
Explore this Project
Astronomy Lecture Series
Monday, April 23, 2018 - 7:00pm to 8:45pm

The formation of our Solar System was a chaotic collapse of gas and dust into the Sun, planets, asteroids, and comets we have today, punctuated by catastrophic collisions between these forming...

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Oregon State University, Joy Leighton
Wednesday, April 25, 2018 - 6:30pm to 8:00pm

Can we use the ocean without using it up? The task is daunting given current trajectories in fisheries, plastics, and other pollutants, and the impacts of climate change and ocean acidification. ...

Explore this Event
Astronomy Lecture Series
Monday, May 7, 2018 - 7:00pm to 8:45pm

Sound waves propagating through the Universe only 400,000 years after the Big Bang now offer some of our most-precise measures of the composition and history of the Universe. In the last decade,...

Explore this Event
Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life...
Meet this Scientist
Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of...
Meet this Scientist
The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans. To understand TH,...
Meet this Scientist

Explore Carnegie Science

April 17, 2018

Washington, DC—Interim Co-Presidents John Mulchaey and Yixian Zheng are thrilled to welcome experimental petrologist Michael Walter as the new Director of Carnegie's Geophysical Laboratory.  

Walter’s recent research has focused on the period early in Earth’s history, shortly after the planet accreted from the cloud of gas and dust surrounding our young Sun, when the mantle and the core first separated into distinct layers. Current topics of investigation also include the structure and properties of various compounds under the extreme pressures and temperatures found deep inside the planet, and information about the pressure, temperature, and chemical conditions of the mantle that

April 9, 2018

Palo Alto, CA—Senior scientist Arthur Grossman of Carnegie’s Department of Plant Biology was part of a team* awarded a three-year grant, with $100,000 for each year, from the International Human Frontier Science Program (HFSP) Organization. The team will use an integrated approach to investigate how light and metabolic signals control photosynthetic processes in algae.  

HFSP’s collaborative research grants are given for endeavors that address “complex mechanisms of living organisms.” The program only supports “cutting-edge, risky projects” conducted by globally distributed teams.

Grossman has been studying algae for years.  Algae dominate the oceans, produce half of the

April 5, 2018

Pasadena, CA—Pomona College junior and returning Carnegie Observatories intern Sal Fu was awarded a Barry M. Goldwater Scholarship in recognition of her academic and research success and to support her continued “academic study and research in the fields of science, mathematics, and engineering.” Fu has participated in the Carnegie Summer Undergraduate Research program over the past two summers, working with staff astronomer Josh Simon studying dwarf galaxies and streams of stars surrounding our Milky Way using data from the Sloan Digital Sky Survey.

“The Summer Undergraduate Research Program at the Carnegie Observatories provides undergraduate students the exciting opportunity to

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Timothy Strobel
March 27, 2018

Washington, DC—A team of scientists including Carnegie’s Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it. Their work is published by Physical Review Letters. 

A detailed understanding of the physics of individual atoms interacting with each other at the microscopic level can lead to the discovery of novel emergent phenomena, help guide the synthesis of new materials, and even aid future drug development.

But at the atomic scale, the classical, so-called Newtonian,

April 23, 2018

The formation of our Solar System was a chaotic collapse of gas and dust into the Sun, planets, asteroids, and comets we have today, punctuated by catastrophic collisions between these forming bodies. Dr. Masiero will discuss how the asteroid families in the belt today are the last remnants of these massive collisions, and give us a window into the processes that shaped our Solar System.

Joseph Masiero: Scientist & NEOWISE Deputy-PI, NASA Jet Propulsion Lab

#AsteroidFam

Tune in to the live video here on and after 4/23: https://livestream.com/accounts/14570535/asteroidfam

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Oregon State University, Joy Leighton
April 25, 2018

Can we use the ocean without using it up? The task is daunting given current trajectories in fisheries, plastics, and other pollutants, and the impacts of climate change and ocean acidification.  However, new scientific insights, tools, and partnerships are providing hope that it’s not too late to transition to more-sustainable practices and policies.  Dr. Lubchenco will draw on her four years as the Under Secretary of Commerce for Oceans and Atmosphere and the Administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), her two years as the first U.S. Science Envoy for the Ocean, and her decades of research around the world to summarize the importance to people of

May 7, 2018

Sound waves propagating through the Universe only 400,000 years after the Big Bang now offer some of our most-precise measures of the composition and history of the Universe. In the last decade, we have detected the fossil imprint of these sound waves using maps of the distribution of galaxies from the Sloan Digital Sky Survey. Dr. Eisenstein will describe these waves and the ambitious experiments that use them to extend our cosmological reach.

Dr. Daniel Eisenstein: Professor of Astronomy, Harvard University and Director, Sloan Digital Sky Survey III

#CosmicSound

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, University of Bristol
May 9, 2018

Looking upward, the vastness of the heavens is accessible through giant telescopes that collect light from the beginning of time. Turn a telescope downward and the opaqueness of our planet conceals the secrets of its origin and evolution. Diamonds, those translucent rarities, illuminate the depths of our planet and reveal connections between the deep Earth and the surface of our planet through both time and space.

Dr. Michael Walter: Director, Geophysical Laboratory,, Carnegie Science 

#DiamondScience

The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for these otherwise invisible extra-solar planets, and achieve the highest long-term precision demonstrated by any Southern Hemisphere planet search.

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

Carnegie is renowned for its post-doctoral and graduate student fellowship programs, which operate on each of the Carnegie campuses. Our fellows participate fully in the institution’s vigorous intellectual life, and have complete access to the laboratory instruments and facilities at the institution. The fellowships are extremely competitive, and are prized for their independence and for the resources they afford the fellows. The fellowships vary in duration depending on the research area. Each fellow is key to ehnancing the Carnegie mission and expanding Carnegie's influence of unfettered, imaginative scientific research into the next generations.  For information about opportunities in

Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and temperature. He particularly focuses on properties of materials under extreme conditions such as high pressure and high temperature. This research applies to various topics and problems in geophysics and technological materials.

Some of his work focuses on understanding the behavior of high-technology materials called ferroelectrics—non-conducting crystals with an electric dipole moment similar

With the proliferation of discoveries of planets orbiting other stars, the race is on to find habitable worlds akin to the Earth. At present, however, extrasolar planets less massive than Saturn cannot be reliably detected. Astrophysicist John Chambers models the dynamics of these newly found giant planetary systems to understand their formation history and to determine the best way to predict the existence and frequency of smaller Earth-like worlds.

As part of this research, Chambers explores the basic physical, chemical, and dynamical aspects that led to the formation of our own Solar System--an event that is still poorly understood. His ultimate goal is to determine if similar

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo. Skin, muscle, cartilage, and bone are all derived from a group of progenitor structures called somites. Various growth factors—molecules that stimulate the growth of cells—in the surrounding tissues work in concert to signal each somitic cell to differentiate into a specific tissue type.

The lab has identified various growth factors that