Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    “Scientists are my best friends,” wildlife photographer Frans Lanting said during a retrospective program at Carnegie’s Washington, DC, headquarters last week.

    He added that without the ability to learn from researchers and generate ideas for new images with them, his work would not hold the same power. “It’s like sculpting,” he said, speaking of these collaborations and conversations.

    Watch This Video

Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or “tagging” by sugars after the protein is assembled. Their work uncovers both similarity and distinction between plants and animals in their use of this protein modification. It is published by Proceedings of the National Academy of Sciences.

Explore this Story

The population of exoplanets discovered by ongoing planet-hunting projects continues to increase. These discoveries can improve models that predict where to look for more of them. New planetary formation models from Carnegie’s Alan Boss indicate that there may be an undiscovered population of gas giant planets orbiting around Sun-like stars at distances similar to those of Jupiter and Saturn. 

 

Explore this Story

Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness—they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions. Now, an international team of researchers including several Carnegie scientists has predicted two stable helium compounds.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at increasing students’ science knowledge and positive attitudes about science. Younger students had the greatest attitude changes. The study covered five years and tested students before and after the one-week BioEYES program.

Explore this Story
Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young....
Explore this Project
The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB). Much of the work makes use of the giant...
Explore this Project
The Anglo-Australian Planet Search (AAPS) is a long-term program being carried out on the 3.9-meter Anglo-Australian Telescope (AAT) to search for giant planets around more than 240 nearby Sun-like stars. The team, including Carnegie scientists,  uses the "Doppler wobble" technique to search for...
Explore this Project
Capital Science Evening Lectures
Tuesday, March 7, 2017 -
6:30pm to 8:00pm

Since releasing its first images of space 5 years ago, the Atacama Large Millimeter/submillimeter Array (ALMA) has produced many exciting and fundamental results, enabling transformational science...

Explore this Event
Broad Branch Road Neighborhood Lectures
Thursday, March 16, 2017 -
6:30pm to 7:30pm

The DNA of one human cell—two copies of our “genome”—would stretch almost two meters if fully extended. However, normally it’s tightly packaged in 46 chromosomes. About 20,000 genes are...

Explore this Event
Astronomy Lecture Series
Monday, April 3, 2017 -
7:30pm to 8:30pm

Supernovae are cosmic explosions where a single star can become as bright as a billion stars combined. Even though supernovae are crucial to the Universe, including producing the elements...

Explore this Event
Andrew Steele uses traditional and biotechnological approaches for the detection of microbial life in the field of astrobiology and Solar System exploration. Astrobiology is the search for the origin and distribution of life in the universe. A microbiologist by training, his principle interest is...
Meet this Scientist
Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies. The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium,...
Meet this Scientist
Luis Ho is a world-renowned black hole expert. Using the Hubble Space Telescope, Ho and colleagues have discovered most of the known black holes in nearby galaxies. Once thought rare, Ho and team instead established that black holes are so common they are integral galactic components. Indeed, black...
Meet this Scientist

Explore Carnegie Science

February 22, 2017

Carnegie trustee emeritus Edward Emil David Jr., died on February 13, 2017, at the age of 92 at his home in Bedminster, New Jersey. He was an active trustee serving for almost 20 years from 1980 to 1997. He had been a trustee emeritus since then. David was a leader in government science policy and industrial research and development for over five decades.  

David was Science Advisor to President Richard Nixon and ran the White House Office of Science and Technology from 1970 until 1973, was a member of the National Academy of Sciences (NAS) and National Academy of Engineering (NAE), and served as President of the American Association for the Advancement of Science (AAAS). He was

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
February 21, 2017

Washington, DC— The American Institute of Physics’ Center for History of Physics has awarded the Carnegie Institution for Science a $10,000 grant to organize and preserve the archives of scientist Oliver H. Gish and open them for research.

Gish was a prominent figure in American geophysics in the early 20th century and an authority in the study of atmospheric and terrestrial electricity. He was a staff scientist at Carnegie’s Department of Terrestrial Magnetism in Washington between 1922 and 1948 and also worked in academia, industry, and government research. His papers are held in the department’s archives.

Gish conducted some of the first cosmic-ray research in the United

February 21, 2017

Washington, DC—New planetary formation models from Carnegie’s Alan Boss indicate that there may be an undiscovered population of gas giant planets orbiting around Sun-like stars at distances similar to those of Jupiter and Saturn. His work is published by The Astrophysical Journal.

The population of exoplanets discovered by ongoing planet-hunting projects continues to increase. These discoveries can improve models that predict where to look for more of them.

The planets predicted by Boss in this study could hold the key to solving a longstanding debate about the formation of our Solar System’s giant planets out of the disk of gas and dust that surrounded the Sun in its

February 20, 2017

Washington, DC—New work from Carnegie’s Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System’s youth when planets were forming and their cores were created. Their findings are published by Nature Geoscience.

Earth and other rocky planets formed as the matter surrounding our young Sun slowly accreted. At some point in Earth’s earliest years, its core formed through a process called differentiation—when the denser materials, like iron, sunk inward toward the center. This formed the layered composition the planet has

March 7, 2017

Since releasing its first images of space 5 years ago, the Atacama Large Millimeter/submillimeter Array (ALMA) has produced many exciting and fundamental results, enabling transformational science in a wide range of astronomy and planetary science subjects, from the Solar System to the early universe. Dr. Cox will present a selection of the most-remarkable ALMA scientific discoveries, compare the array’s original fundamental science with its current results, and outline the future evolution of ALMA. 

Dr. Pierre Cox, Director, ALMA
#CosmicOrigins

The Capital Science Evenings are made possible in part by the generous support of Margaret and Will Hearst.

Check

March 16, 2017

The DNA of one human cell—two copies of our “genome”—would stretch almost two meters if fully extended. However, normally it’s tightly packaged in 46 chromosomes. About 20,000 genes are distributed along this DNA; they carry the information for building and operating a human. Any particular gene is located at a specific place in a chromosome and, normally, stays there. Carnegie scientist Barbara McClintock discovered, in corn, that some genes jump from one place in a chromosome to another. Similar things occur in most organisms, including us. This discovery, which earned a Nobel prize, led to dramatic advances in understanding infectious disease, evolution, and the controls that turn

April 3, 2017

Supernovae are cosmic explosions where a single star can become as bright as a billion stars combined. Even though supernovae are crucial to the Universe, including producing the elements necessary for life, many mysteries remain. What powers them? Which stars are exploding? How do stars die? Astrophysicists are combining clues from observations with theoretical modeling to finally address these issues. And just like with any good mystery, often the answers lead to even more questions.

Tony Piro, George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, Carnegie Observatories

Registration opens Wednesday, February 15. Registration is required. 

April 6, 2017

Dr. Ostrander’s team has taken advantage of naturally occurring variations in dog populations in order to reveal the genetic mechanisms underlying both simple and complex traits. She will show how findings related to the genetic basis for canine disease, behavior, and morphologic traits frame our thinking of human growth regulation, disease, and population migration.

Dr. Elaine Ostrander, Chief, Cancer Genetics and Comparative Genomics, National Human Genome Research Institute, Nation Institute of Health
#DogGenetics

The Capital Science Evenings are made possible in part by the generous support of Margaret and Will Hearst.

Check back one week prior to the

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

Scott Sheppard studies the dynamical and physical properties of small bodies in our Solar System, such as asteroids, comets, moons and trans-neptunian objects (bodies that orbit beyond Neptune).  These objects have a fossilized imprint from the formation and migration of the major planets in our Solar System, which allow us to understand how the Solar System came to be.

The major planets in our Solar System travel around the Sun in fairly circular orbits and on similar planes. However, since the discovery of wildly varying planetary systems around other stars, and given our increased understanding about small, primordial bodies in our celestial neighborhood, the notion that our

Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and temperature. He particularly focuses on properties of materials under extreme conditions such as high pressure and high temperature. This research applies to various topics and problems in geophysics and technological materials.

Some of his work focuses on understanding the behavior of high-technology materials called ferroelectrics—non-conducting crystals with an electric dipole moment similar

John Mulchaey, director of the Observatories,  investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a scientific editor for The Astrophysical Journal and is actively involved in public outreach and education.

Most galaxies including our own Milky Way, exist in collections known as groups, which are the most common galaxy systems and are important laboratories for studying galaxy formation and evolution. Mulchaey studies galaxy groups to understand the processes that affect most galaxies during their lifetimes.

As a graduate student, Mulchaey led

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She integrates her data with