Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    “Scientists are my best friends,” wildlife photographer Frans Lanting said during a retrospective program at Carnegie’s Washington, DC, headquarters last week.

    He added that without the ability to learn from researchers and generate ideas for new images with them, his work would not hold the same power. “It’s like sculpting,” he said, speaking of these collaborations and conversations.

    Watch This Video

Climate change and recent heat waves have put agricultural crops at risk, which means that understanding how plants respond to elevated temperatures is crucial for protecting our environment and food supply. For many plants, even a small increase in average temperature can profoundly affect their growth and development. New research uncovers the system by which plants regulate their response to heat differently between daytime and nighttime. 

Explore this Story

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. 

Explore this Story

Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology. Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, until now one of the most-promising forms of germanium for practical applications, called ST12, had only been created in tiny sample sizes that were too small to definitively confirm its properties.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at increasing students’ science knowledge and positive attitudes about science. Younger students had the greatest attitude changes. The study covered five years and tested students before and after the one-week BioEYES program.

Explore this Story
Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the...
Explore this Project
The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. The integrated HPCAT facility has...
Explore this Project
The Energy Frontier Research in Extreme Environments Center (EFree) was established to accelerate the discovery and synthesis of kinetically stabilized, energy-related materials using extreme conditions. Partners in this Carnegie-led center include world-leading groups in five universities—Caltech...
Explore this Project
Devaki Bhaya wants to understand how environmental stressors, such as light, nutrients, and viral attacks are sensed by and affect photosynthetic microorganisms. She is also interested in understanding the mechanisms behind microorganism movements, and how individuals in groups communicate, evolve...
Meet this Scientist
Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to...
Meet this Scientist
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist

Explore Carnegie Science

January 17, 2017

Washington, D.C.—Global Ecology NSF Fellow Mary Whelan has been honored with Carnegie’s fifth Postdoctoral Innovation and Excellence (PIE) Award. These prizes are made through nominations from the department directors and are chosen by the Office of the President. Whelan was awarded the prize for both her scientific and cultural contributions to the Carnegie community.

Whelan’s work on atmospheric trace gas biogeochemistry shows an enormous breadth of skills, knowledge, and curiosity. She asks both “how do we measure it?” and “what does it tell us about the world?”—two scientific questions that are increasingly “siloed”  in the environmental sciences. She spends hours of

January 13, 2017

Even though carbon is one of the most-abundant elements on Earth, it is actually very difficult to determine how much of it exists below the surface in Earth’s interior. Analysis by Carnegie’s Marion Le Voyer and Erik Hauri of crystals containing completely enclosed mantle magma with its original carbon content preserved has doubled the world’s known finds of mantle carbon. The findings are published in Nature Communications.

Overall, there is a lot about carbon chemistry that takes place below Earth’s crust that scientists still don’t understand. In particular, the amount of carbon in the Earth’s mantle has been the subject of hot debate for decades. This topic is of interest

Carnegie Science, Carnegie Institution for Science, Carnegie Institution
January 3, 2017

Washington, DC—Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.

Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, one of the most-promising forms of germanium for practical applications, called ST12, has only been created in tiny sample sizes—too small to definitively confirm its properties.

“Attempts to experimentally or theoretically pin down ST12-germanium’s characteristics produced extremely varied results, especially in terms of its electrical conductivity,” said

December 26, 2016

Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She was a retired staff astronomer at the Carnegie Institution’s Department of Terrestrial Magnetism in Washington, D.C.

“Vera Rubin was a national treasure as an accomplished astronomer and a wonderful role model for young scientists,” remarked Carnegie president Matthew Scott. “We are very saddened by this loss.”

In the 1960s, Rubin’s interest in how stars orbit their galactic

No content in this section.

DC Stem Network

The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed in October 2014 through a partnership between Carnegie Science’s Carnegie Academy for Science Education and the DC Office of the State Superintendent of Education.  Over 200 community partners have already engaged in the effort to enhance STEM learning opportunities for DC students and teachers within the classroom, outside of the classroom and in the workplace.

This past year, the

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures. The bloom began in the western region in mid-July and covered an area of 230 square miles (600 km2). At its peak in October, the bloom had expanded to over 1930 square miles (5000 km2). Its peak intensity was over 3 times greater than any other bloom on record. The scientists predicted that, unless agricultural policies change, the lake will continue to experience

Understanding how plants grow can lead to improving crops.  Plant scientist Kathryn Barton, who joined Carnegie in 2001, investigates just that: what controls the plant’s body plan, from  the time it’s an embryo to its adult leaves. These processes include how plant parts form different orientations, from top to bottom, and different poles. She looks at regulation by small RNA’s, the function of small so-called Zipper proteins, and how hormone biosynthesis and response controls the plant’s growth.

Despite an enormous variety in leaf shape and arrangement, the basic body plan of plants is about the same: stems and leaves alternate in repeating units. The structure responsible for

Viktor Struzhkin develops new techniques for high-pressure experiments to measure transport and magnetic properties of materials to understand aspects of geophysics, planetary science, and condensed-matter physics. Among his goals are to detect the transition of hydrogen into a high-temperature superconductor under pressure—a state predicted by theory, but thus far unattained—to discover new superconductors, and to learn what happens to materials in Earth’s deep interior where pressure and temperature conditions are extreme. 

Recently, a team including Struzhkin was the first to discover the conditions under which nickel oxide can turn into an electricity-conducting metal. Nickel

Earth scientist Robert Hazen has an unusually rich research portfolio. He is trying to understand the carbon cycle from deep inside the Earth; chemical interactions at crystal-water interfaces; the interactions of organic molecules on mineral surfaces as a possible springboard to life; how life arose from the chemical to the biological world; how life emerges in extreme environments; and the origin and distribution of life in the universe  just to name a few topics. In tandem with this expansive Carnegie work, he is also the Clarence Robinson Professor of Earth Science at George Mason University. He has authored more than 350 articles and 20 books on science, history, and music.

 

Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies.

The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium, iron, calcium, aluminum, titanium, sodium and sometimes water are distributed, and how they behave when melting occurs and  when magmas are generated and transported to the surface in volcanoes.

The presence of water, carbon and other so-called volatiles have a large influence on the strength and melting point of planetary interiors. This in turn determines where magmas are