John Mulchaey and Yixian Zheng named interim co-presidents

Carnegie Observatories Director John Mulchaey and Carnegie Embryology Director Yixian Zheng jointly will serve in the Office of the President on an interim basis starting January 1, 2018. Their selection as interim co-presidents was a unanimous decision of the Carnegie Board of Trustees. 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients. New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. Salinity has deleterious effects on plant health and limits crop yields, because salt inhibits water uptake and can be toxic for plants. But Dinneny and his collaborators, including Alice Cheung at the University of Massachusetts Amherst and Carnegie’s Wei Feng determined a never-before-described effect that salt has on the plant cell wall.

    Explore this Story
  • Youtube URL: 

    Drs. Peter and Rosemary Grant
    Professors emeriti, Princeton University
    Charles Darwin said evolution was too slow to be observed, but modern studies have corrected this assertion. The Grants discussed their decades of work studying Darwin’s finches on the Galápagos Island of Daphne Major, as chronicled in the Pulitzer Prize-winning book The Beak of the Finch: A Story of Evolution in Our Time. Their research showed that Darwin’s finches evolve repeatedly when the environment changes. They have even observed the initial stages of new species formation!

     

    Watch This Video

Water is so common that we take it for granted. Yet water also has very strange properties compared to most other liquids. In addition to ordinary water and water vapor, or steam, there are at least 17 forms of water ice, and two proposed forms of super-cooled liquid water. New work from Carnegie high-pressure geophysicists Chuanlong Lin, Jesse Smith, Stanislav Sinogeikin, and Guoyin Shen found evidence of the long-theorized, difficult-to-see low-density liquid phase of water.

Explore this Story

A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new research led by Carnegie’s Johanna Teske. This new information provides evidence to help astronomers better understand the process by which such planets form.

Explore this Story

A team of experimental and computational scientists led by Carnegie’s Tim Strobel and Venkata Bhadram have synthesized a long sought-after cubic crystalline phase of titanium nitride, Ti3N4, which is a semiconductor with promising excellent mechanical and wear resistance properties.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

It is well understood that Earth formed from the accretion of matter surrounding the young Sun. Eventually the planet grew to such a size that denser iron metal sank inward, to form the beginnings of the Earth’s core, leaving the silicate-rich mantle floating above. But new work from a team led by Carnegie’s Yingwei Fei and Carnegie and the Smithsonian’s Colin Jackson argues that this mantle and core separation was not such an orderly process.

Explore this Story
  • Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, galaxy, and Solar System. New work from a team of Carnegie cosmochemists published by Science Advances reports analyses of carbon-rich dust grains extracted from meteorites that show that these grains formed in the outflows from one or more type II supernovae more than two years after the progenitor stars exploded. This dust was then blown into space to be eventually incorporated into new stellar systems, including in this case, our own.

    Explore this Story
The Giant Magellan Telescope will be one member of the next class of super giant earth-based telescopes that promises to revolutionize our view and understanding of the universe. It will be constructed in the Las Campanas Observatory in Chile. Commissioning of the telescope is scheduled to begin in...
Explore this Project
The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In...
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting...
Explore this Project
Special Events
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Carnegie Origins
Tuesday, March 6, 2018 - 5:30pm to 9:00pm

How and when did life originate on Earth? How many other Earth-like planets exist in our Solar System and universe?

From the beginnings of recorded history, humans have had a fascination...

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
Thursday, March 29, 2018 - 6:30pm to 8:00pm

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth....

Explore this Event
Astronomy Lecture Series
Monday, April 9, 2018 - 7:00pm to 8:45pm

What is the Universe made of? We can peer millions of years into the past in the night sky, yet we barely understand just 5 percent—the “regular” matter that we can see. In the standard...

Explore this Event
There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and...
Meet this Scientist
Some 40 thousand tons of extraterrestrial material fall on Earth every year. This cosmic debris provides cosmochemist Conel Alexander with information about the formation of the Solar System, our galaxy, and perhaps the origin of life. Alexander studies meteorites to determine what went on before...
Meet this Scientist
Mark Phillips is the Las Campanas Observatory (LCO) Director Emeritus. From 2006 to 2017 Phillips served as the Associate Director for Magellan, and from 2014 to 2017 he was the interim LCO Director. He is a world-renowned supernova expert. Most stars die quietly by cooling down and “turning off”...
Meet this Scientist

Explore Carnegie Science

February 16, 2018

Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. The findings, published by Current Biology, could help scientists improve agricultural productivity in saline soils, which occur across the globe and reduce crop yields.

Salts build up in soils from natural causes, such as sea spray, or can be introduced as a consequence of irrigation and poor land management. Salinity has deleterious effects on plant health and limits crop yields,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Chuanlong Lin, Guoyin Shen
February 13, 2018

Washington, DC—Water makes up more than 70 percent of our planet's surface and up to 60 percent of our bodies.

Water is so common that we take it for granted. Yet water also has very strange properties compared to most other liquids. Its solid form is less dense than its liquid form, which is why ice floats; its peculiar heat capacity profile has a profound impact on ocean currents and climate; and it can remain liquid at extremely cold temperatures.

In addition to ordinary water and water vapor, or steam, there are at least 17 forms of water ice, and two proposed forms of super-cooled liquid water.

New work from Carnegie high-pressure geophysicists Chuanlong Lin,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory
February 8, 2018

Pasadena, CA— A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new research led by Carnegie’s Johanna Teske. This new information provides evidence to help astronomers better understand the process by which such planets form.

The GJ 9827 star actually hosts a trio of planets, discovered by NASA’s exoplanet-hunting Kepler/K2 mission, and all three are slightly larger than Earth. This is the size that the Kepler mission determined to be most common in the galaxy with periods between a few and several-hundred-days.

Intriguingly, no planets of this size

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Venkata Bhadram
January 24, 2018

Washington, DC—A team of experimental and computational scientists led by Carnegie’s Tim Strobel and Venkata Bhadram have synthesized a long sought-after form of titanium nitride, Ti3N4, which has promising mechanical and optoelectronic properties.

Standard titanium nitride (TiN), with a one-to-one ratio of titanium and nitrogen, exhibits a crystal structure resembling that of table salt—sodium chloride, or NaCl.  It is a metal with abrasive properties and thus used for tool coatings and manufacturing of electrodes. Titanium nitride with a three-to-four ratio of titanium and nitrogen, called titanic nitride, has remained elusive, despite previous theoretical predictions of its

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Carnegie Origins
March 6, 2018

How and when did life originate on Earth? How many other Earth-like planets exist in our Solar System and universe?

From the beginnings of recorded history, humans have had a fascination with their origins and with questions such as these. As part of our ongoing Science & Society project, Carnegie Science is pleased to present a series of four discussion forums on origins-related questions, including: How did we get here, where are we going, are we alone and what does that mean for humanity?

The invitation-only events and subsequent video series will highlight the importance and process of discovery science—emphasizing both how scientists think about fundamental

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
March 29, 2018

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth.

Dr. Julia Clarke: Wilson Professor of Vertebrate Paleontology & HHMI Professor, Jackson School of Geosciences, The University of Texas at Austin

#DinosaurBones

April 9, 2018

What is the Universe made of? We can peer millions of years into the past in the night sky, yet we barely understand just 5 percent—the “regular” matter that we can see. In the standard cosmological model, a quarter of the remaining 95 percent is dark matter. Dr. Seidel will discuss her quest to understand dark matter, and her experiences bringing astronomy education to some of the most remote and under-served locations on Earth.

Dr. Marja K. Seidel: Postdoctoral Research Associate, Carnegie Observatories

#DarkMatter

April 23, 2018

The formation of our Solar System was a chaotic collapse of gas and dust into the Sun, planets, asteroids, and comets we have today, punctuated by catastrophic collisions between these forming bodies. Dr. Masiero will discuss how the asteroid families in the belt today are the last remnants of these massive collisions, and give us a window into the processes that shaped our Solar System.

Joseph Masiero: Scientist & NEOWISE Deputy-PI, NASA Jet Propulsion Lab

#AsteroidFam

Along with Alycia Weinberger and Ian Thompson, Alan Boss has been running the Carnegie Astrometric Planet Search (CAPS) program, which searches for extrasolar planets by the astrometric method, where the planet's presence is detected indirectly through the wobble of the host star around the center of mass of the system. With over eight years of CAPSCam data, they are beginning to see likely true astrometric wobbles beginning to appear. The CAPSCam planet search effort is on the verge of yielding a harvest of astrometrically discovered planets, as well as accurate parallactic distances to many young stars and M dwarfs. For more see  http://instrumentation.obs.carnegiescience.edu/ccd/caps.

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Starting in 2005, the High Lava Plains project is focused on a better understanding of why the Pacific Northwest, specifically eastern Oregon's High Lava Plains, is so volcanically active. This region is the most volcanically active area of the continental United States and it's relatively young. None of the accepted paradigms explain why the magmatic and tectonic activity extend so far east of the North American plate margin. By applying numerous techniques ranging from geochemistry and petrology to active and passive seismic imaging to geodynamic modeling, the researchers examine an assemblage of new data that will provide key information about the roles of lithosphere structure,

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a

What sets George Cody, acting director of the Geophysical Laboratory,  apart from other geochemists is his pioneering use of sophisticated techniques such as enormous facilities for synchrotron radiation, and sample analysis with nuclear magnetic resonance (NMR) spectroscopy to characterize hydrocarbons. Today, Cody  applies these techniques to analyzing the organic processes that alter sediments as they mature into rock inside the Earth and the molecular structure of extraterrestrial organics.

Wondering about where we came from has occupied the human imagination since the dawn of consciousness. Using samples from comets and meteorites, George Cody tracks the element carbon as it

Junior investigator Zhao Zhang joined Carnegie in November 2014. He studies how elements with the ability to “jump” around the genome, called transposons, are controlled in egg, sperm, and other somatic tissues in order to understand how transposons contribute to genomic instability and to mutations that lead to inherited disease and cancer. He particularly focuses on transposon control and its consequences in gonads compared to other tissues and has discovered novel connections to how gene transcripts are processed in the nucleus.To accomplish this work, Zhang frequently develops new tools and techniques, a characteristic of many outstanding Carnegie researchers. He recently received

Staff astronomer emeritus Eric Persson headed a group that develops and uses telescope instrumentation to exploit new near-infrared (IR) imaging array detectors. The team built a wide-field survey camera for the du Pont 2.5-meter telescope at Carnegie’s Las Campanas Observatory in Chile, and the first of two cameras for the Magellan Baade telescope. Magellan consortium astronomers use the Baade camera for various IR-imaging projects, while his group focuses on distant galaxies and supernovae.

Until recently, it was difficult to find large numbers of galaxies at near-IR wavelengths. But significant advances in the size of IR detector arrays have allowed the Persson group to survey

Carnegie Observatories Director John Mulchaey and Carnegie Embryology Director Yixian Zheng serve jointly as interim Co-Presidents of Carnegie following the retirement of Matthew Scott. During this period, Mulchaey and Zheng will continue in their directorship roles at their respective departments.

John Mulchaey investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also actively involved in public outreach and education.

Most galaxies including our own Milky Way exist in collections known as groups, which are the most common galaxy systems and are