Washington, DC— You know the old saying: Location, location, location? It turns out that it applies to the Amazon rainforest, too. New work from Carnegie’s Greg Asner illustrates a hidden tapestry of chemical variation across the lowland Peruvian Amazon, with plants in different areas producing an...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    In the face of global climate change, increasing the use of renewable energy resources is one of the most urgent challenges facing the world. Further development of one resource, solar energy, is complicated by the need to find space for solar power-generating equipment without significantly altering the surrounding environment. New work from Carnegie found that the amount of energy that could be generated from solar equipment constructed on and around existing infrastructure in California would exceed the state’s demand by up to five times. 

    Watch This Video

Washington, DC— Carnegie’s Zhiyong Wang will receive the Humboldt Research Award, one of Germany’s most-prestigious prizes.

Granted by the Alexander von Humboldt Foundation up to 100 times each year, the award honors academics “whose fundamental discoveries, new theories, or insights have had a significant impact on their own discipline and who are expected to continue producing cutting-edge achievements in the future.”

Explore this Story

Washington, DC— New work from Carnegie’s Alan Boss offers a potential solution to a longstanding problem in the prevailing theory of how rocky planets formed in our own Solar System, as well as in others. The snag he’s untangling: how dust grains in the matter orbiting a young protostar avoid getting dragged into the star before they accumulate into bodies large enough that their own gravity allows them to rapidly attract enough material to grow into planets.

Explore this Story

Washington, DC— Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain materials, and even then it can only be achieved under controlled conditions of low temperatures and high pressures.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Allan Spradling offers input to The Scientist on a paper about female Japanese rice fish producing sperm. More

Explore this Story
Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
The Carnegie Hubble program is an ongoing comprehensive effort that has a goal of determining the Hubble constant, the expansion rate of the universe,  to a systematic accuracy of 2%. As part of this program, astronomers are obtaining data at the 3.6 micron wavelength using the Infrared Array...
Explore this Project
High-elevation, low relief surfaces are common on continents. These intercontinental plateaus influence river networks, climate, and the migration of plants and animals. How these plateaus form is not clear. Researchers are studying the geodynamic processes responsible for surface uplift in the...
Explore this Project
Capital Science Evening Lectures
Thursday, September 17, 2015

Modern tomatoes lack the intense flavor of heirloom, grown in your back yard varieties. What exactly is “tomato flavor”? Where did it go and what can we do about it? We believe that better flavor...

Explore this Event
Seminars / Conferences
Monday, November 09, 2015 to Friday, November 13, 2015

 

About:

Physics and chemistry have arrived at a deep understanding of the non-living world. Can we expect to reach similar insights, integrating concepts and quantitative...

Explore this Event
Like some other Carnegie astronomers, staff associate Jeffrey Crane blends science with technology. His primary interests are instrumentation, the Milky Way and the neighboring Local Group of galaxies, in addition to extrasolar planets. In 2004, then-research associate Crane joined Steve Shectman,...
Meet this Scientist
Yixian Zheng’s lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use...
Meet this Scientist
Alan Linde is trying to understand the tectonic activity that is associated with earthquakes and volcanos, with the hope of helping predictions methods.  He uses highly sensitive data that measures how the Earth is changing below the surface with devises called borehole strainmeters that measure...
Meet this Scientist

Explore Carnegie Science

June 25, 2015

Washington, DC— New work from Carnegie’s Alan Boss offers a potential solution to a longstanding problem in the prevailing theory of how rocky planets formed in our own Solar System, as well as in others. The snag he’s untangling: how dust grains in the matter orbiting a young protostar avoid getting dragged into the star before they accumulate into bodies large enough that their own gravity allows them to rapidly attract enough material to grow into planets. The study is published by The Astrophysical Journal.

In the early stages of their formation, stars are surrounded by rotating disks of gas and dust. The dust grains in the disk collide and aggregate to form pebbles, which

June 22, 2015

Washington, DC—The interiors of several of our Solar System’s planets and moons are icy, and ice has been found on distant extrasolar planets, as well.  But these bodies aren’t filled with the regular kind of water ice that you avoid on the sidewalk in winter. The ice that’s found inside these objects must exist under extreme pressures and high-temperatures, and potentially contains salty impurities, too.

New research from a team including Carnegie’s Alexander Goncharov focuses on the physics underlying the formation of the types of ice that are stable under the paradoxical-seeming conditions likely to be found in planetary interiors. Their work, published by Proceedings of the

June 16, 2015

Washington, DC— Carnegie’s Zhiyong Wang will receive the Humboldt Research Award, one of Germany’s most-prestigious prizes.

Granted by the Alexander von Humboldt Foundation up to 100 times each year, the award honors academics “whose fundamental discoveries, new theories, or insights have had a significant impact on their own discipline and who are expected to continue producing cutting-edge achievements in the future.”

Alexander von Humboldt was a geographer and naturalist who spent between 1799 and 1804 exploring Central and South America, and authored the seminal five-volume treatise on science Cosmos: A Sketch of the Physical Description of the Universe. 

June 15, 2015

Washington, DC— The matter that makes up distant planets and even-more-distant stars exists under extreme pressure and temperature conditions. This matter includes members of a family of seven elements called the noble gases, some of which—such as helium and neon—are household names. New work from a team of scientists led by Carnegie’s Alexander Goncharov used laboratory techniques to mimic stellar and planetary conditions, and observe how noble gases behave under these conditions, in order to better understand the atmospheric and internal chemistry of these celestial objects. Their work is published the week of June 15 by Proceedings of the National Academy of Sciences.

The team

September 17, 2015

Modern tomatoes lack the intense flavor of heirloom, grown in your back yard varieties. What exactly is “tomato flavor”? Where did it go and what can we do about it? We believe that better flavor leads directly to better, healthier food choices. So we have systematically taken apart the chemistry and genetics of flavor in order to understand and restore it to its former glory. Along the way we’ve learned some amazing things about the way we taste and smell that have major implications for foods.

Dr. Harry Klee, University of Florida, Horticultural Sciences Department

November 9, 2015

 

About:

Physics and chemistry have arrived at a deep understanding of the non-living world. Can we expect to reach similar insights, integrating concepts and quantitative explanation, in biology? Life at its origin should be particularly amenable to discovery of scientific laws governing biology, since it marks the point of departure from a predictable physical/chemical world to the novel and history-dependent living world. The origin of life problem is difficult because even the simplest living cell is highly evolved from the first steps toward life, of which little direct evidence remains. The conference aims to explore ways to build a deeper understanding of the nature of

The Gall laboratory studies all aspects of the cell nucleus, particularly the structure of chromosomes, the transcription and processing of RNA, and the role of bodies inside the cell nucleus, especially the Cajal body (CB) and the histone locus body (HLB).

Much of the work makes use of the giant oocyte of amphibians and the equally giant nucleus or germinal vesicle (GV) found in it. He is particularly  interested in how the structure of the nucleus is related to the synthesis and processing of RNA—specifically, what changes occur in the chromosomes and other nuclear components when RNA is synthesized, processed, and transported to the cytoplasm.

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (PBPs), proteins that are primary receptors for moving chemicals  for hundreds of different small molecules. PBPs are ideally suited for sensor construction. The scientists fusie individual PBPs with a pair of variants and produced a large set of sensors, e.g. for sugars like maltose, ribose and glucose or for the neurotransmitter glutamate. These sensors have been adopted for measurement of sugar

Scientific literacy is now recognized to be crucial for our nation's progress in the 21st century.

The Carnegie Institution, a pre-eminent basic research organization, has fostered the development of scientific knowledge since the early 20th century. For many years, this meant the training of graduate students and postdoctoral fellows in the Institution's laboratories, located in Washington, DC and around the country.

In 1989, Maxine Singer, then president of Carnegie, founded First Light, a Saturday science school for children. This was the start of the Carnegie Academy for Science Education (CASE) whose goal is to encourage interest in science among school children and

Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond anvil cell. 

The Earth was formed through energetic and dynamic processes. Giant impacts, radioactive elements, and gravitational energy heated the  planet in its early stage, melting materials and paving the way for the silicate mantle and metallic core to separate.  As the planet cooled and solidified geochemical and geophysical “fingerprints” resulted from mantle–core differentiation,

Russell  Hemley examines the properties of materials at high pressures for uses in experimental and theoretical studies in condensed matter physics, Earth and planetary science, and materials science.  He uses optical spectroscopy, x-ray diffraction, and diamond-cell techniques.

Hemley explores the chemistry of materials over a broad range of thermodynamic conditions from low to very high pressures. Matter behaves very differently under high-pressure and temperature conditions. Electrons are squeezed closer, for instance, creating new interactions, and materials’ structure can be profoundly altered. At Carnegie, Hemley began to apply and extend chemical physics techniques in high-

Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies.

The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium, iron, calcium, aluminum, titanium, sodium and sometimes water are distributed, and how they behave when melting occurs and  when magmas are generated and transported to the surface in volcanoes.

The presence of water, carbon and other so-called volatiles have a large influence on the strength and melting point of planetary interiors. This in turn determines where magmas are

Steroids are important hormones in both animals and plants. They bulk up plants just as they do human athletes, but the pathway of molecular signals that tell the genes to boost growth and development is more complex in plant cells than in animal cells. Unlike animals, plants do not have glands to produce and secrete hormones. Rather, each plant cell has the ability to generate hormones. Another difference is that animal cells typically have receptor molecules that respond to select steroids located within a cell's nucleus. In plants, steroid receptors are anchored to the outside surface of a cell’s outer membrane—the membrane that delineates a cell as a single unit.

Zhiyong Wang