Washington, DC–Renowned astrophysicist and National Medal of Science awardee Vera Rubin passed away in Princeton N.J., the evening of December 25, 2016, at the age of 88. Rubin confirmed the existence of dark matter—the invisible material that makes up more than 90% of the mass of the universe. She...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    “Scientists are my best friends,” wildlife photographer Frans Lanting said during a retrospective program at Carnegie’s Washington, DC, headquarters last week.

    He added that without the ability to learn from researchers and generate ideas for new images with them, his work would not hold the same power. “It’s like sculpting,” he said, speaking of these collaborations and conversations.

    Watch This Video

Stanford, CA—New work from Carnegie’s Shouling Xu and Zhiyong Wang reveals that the process of synthesizing many important master proteins in plants involves extensive modification, or “tagging” by sugars after the protein is assembled. Their work uncovers both similarity and distinction between plants and animals in their use of this protein modification. It is published by Proceedings of the National Academy of Sciences.

Explore this Story

New work from Carnegie’s Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System’s youth when planets were forming and their cores were created. 

Explore this Story

Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness—they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions. Now, an international team of researchers including several Carnegie scientists has predicted two stable helium compounds.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD—A first-of-its-kind study on almost 20,000 K-12 underrepresented public school students shows that Project BioEYES, based at Carnegie’s Department of Embryology, is effective at increasing students’ science knowledge and positive attitudes about science. Younger students had the greatest attitude changes. The study covered five years and tested students before and after the one-week BioEYES program.

Explore this Story
The fund supports a postdoctoral fellowship in astronomy that rotates between the Carnegie Science departments of Terrestrial Magnetism in Washington, D.C., and the Observatories in Pasadena California. 
Explore this Project
Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the...
Explore this Project
The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting...
Explore this Project
Capital Science Evening Lectures
Tuesday, March 7, 2017 -
6:30pm to 8:00pm

Since releasing its first images of space 5 years ago, the Atacama Large Millimeter/submillimeter Array (ALMA) has produced many exciting and fundamental results, enabling transformational science...

Explore this Event
Astronomy Lecture Series
Monday, April 3, 2017 -
7:30pm to 8:30pm

Supernovae are cosmic explosions where a single star can become as bright as a billion stars combined. Even though supernovae are crucial to the Universe, including producing the elements...

Explore this Event
Capital Science Evening Lectures
Thursday, April 6, 2017 -
6:30pm to 8:00pm

Dr. Ostrander’s team has taken advantage of naturally occurring variations in dog populations in order to reveal the genetic mechanisms underlying both simple and complex traits. She will show how...

Explore this Event
Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell...
Meet this Scientist
For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive...
Meet this Scientist
Rebecca Bernstein combines observational astronomy with developing new instruments and techniques to study her objects of interest. She focuses on formation and evolution of galaxies by studying the chemistry of objects called extra galactic globular clusters—old, spherical compact groups of stars...
Meet this Scientist

Explore Carnegie Science

February 20, 2017

Washington, DC—New work from Carnegie’s Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System’s youth when planets were forming and their cores were created. Their findings are published by Nature Geoscience.

Earth and other rocky planets formed as the matter surrounding our young Sun slowly accreted. At some point in Earth’s earliest years, its core formed through a process called differentiation—when the denser materials, like iron, sunk inward toward the center. This formed the layered composition the planet has

Carnegie Science, Carnegie Institution, Carnegie Institution for Science
February 13, 2017

Washington, DC— An international team of astronomers released the largest-ever compilation of exoplanet-detecting observations made using a technique called the radial velocity method. They demonstrated how these observations can be used to hunt for planets by detecting more than 100 potential exoplanets, including one orbiting the fourth-closest star to our own Solar System, which is about 8.1 light years away from Earth. The paper is published in The Astronomical Journal.

The radial velocity method is one of the most successful techniques for finding and confirming planets. It takes advantage of the fact that in addition to a planet being influenced by the gravity of the star it

February 6, 2017

Washington, DC— Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness—they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions. 

Now, an international team of researchers led by Skoltech’s Artem R. Oganov (also a professor at Stony Brook University and head of Computational Materials Discovery laboratory at Moscow Institute of Physics and Technology) has predicted two stable helium compounds—

February 2, 2017

Washington, D.C.—In Earth’s interior, water (H2O) plays an important role in rock physics, but geoscientists rarely treat water in its constituent forms, that is as hydrogen plus oxygen. New work from a team led by Carnegie’s Dave Mao has identified that hydrogen can escape from the water under conditions found in Earth’s lower mantle leading to a new paradigm in lower-mantle chemistry. Their results were published in Proceedings of the National Academy of Sciences, U.S.A.          

In the atmosphere, hydrogen is a colorless, transparent gas. It bonds with oxygen to form water, which fuels the biosphere on the Earth’s surface. Deep in the rocky world beneath our feet, so-called

March 7, 2017

Since releasing its first images of space 5 years ago, the Atacama Large Millimeter/submillimeter Array (ALMA) has produced many exciting and fundamental results, enabling transformational science in a wide range of astronomy and planetary science subjects, from the Solar System to the early universe. Dr. Cox will present a selection of the most-remarkable ALMA scientific discoveries, compare the array’s original fundamental science with its current results, and outline the future evolution of ALMA. 

Dr. Pierre Cox, Director, ALMA
#CosmicOrigins

The Capital Science Evenings are made possible in part by the generous support of Margaret and Will Hearst.

Check

April 3, 2017

Supernovae are cosmic explosions where a single star can become as bright as a billion stars combined. Even though supernovae are crucial to the Universe, including producing the elements necessary for life, many mysteries remain. What powers them? Which stars are exploding? How do stars die? Astrophysicists are combining clues from observations with theoretical modeling to finally address these issues. And just like with any good mystery, often the answers lead to even more questions.

Tony Piro, George Ellery Hale Distinguished Scholar in Theoretical Astrophysics, Carnegie Observatories

Registration opens Wednesday, February 15. Registration is required. 

April 6, 2017

Dr. Ostrander’s team has taken advantage of naturally occurring variations in dog populations in order to reveal the genetic mechanisms underlying both simple and complex traits. She will show how findings related to the genetic basis for canine disease, behavior, and morphologic traits frame our thinking of human growth regulation, disease, and population migration.

Dr. Elaine Ostrander, Chief, Cancer Genetics and Comparative Genomics, National Human Genome Research Institute, Nation Institute of Health
#DogGenetics

The Capital Science Evenings are made possible in part by the generous support of Margaret and Will Hearst.

Check back one week prior to the

April 17, 2017

The formation of galaxies like our Milky Way involves gravity, dark matter, gases, star formation, and stellar explosions. Theoretical astrophysics is now revealing this complex process by using the world’s most powerful supercomputers to simulate galaxy formation. Dr. Wetzel will describe dramatic new advances in understanding how galaxies form within the cosmic web of the Universe.

Andrew Wetzel, Caltech-Carnegie Postdoctoral Fellow

Registration opens Wednesday, February 15. Registration is required. 

The Geophysical Laboratory has made important advances in the growth of diamond by chemical vapor deposition (CVD).  Methods have been developed to produce single-crystal diamond at low pressure having a broad range of properties.

The recent discovery that the universe is expanding at an accelerating rate has profoundly affected physics. If the universe were gravity-dominated then it should be decelerating. These contrary results suggest a new form of “dark energy”—some kind of repulsive force—is driving the universe. To get a grasp of dark energy, it is extremely important that scientists get the most accurate measurements possible of Type Ia supernovae. These are specific types of exploring stars with exceptional luminosity that allow astronomers to determine distances and the acceleration rate at different distances. At the moment, the reality of the accelerating universe remains controversial because of

Monitoring tropical deforestation and forest degradation with satellites can be an everyday activity for non-experts who support environmental conservation, forest management, and resource policy development.

Through extensive observation of user needs, the Greg Asner team developed CLASlite ( the Carnegie Landsat Analysis System--Lite) to assist governments, nongovernmental organizations, and academic institutions with high-resolution mapping and monitoring of forests with satellite imagery.

CLASlite is a software package designed for highly automated identification of deforestation and forest degradation from remotely sensed satellite imagery. It incorporates state-of-the

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions to genes for which no function had

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Although the biochemical details of transcription and RNA processing are known, relatively little is understood about their cellular organization. Joseph G. Gall has been an intellectual leader and has made seminal breakthroughs in our understanding of chromosomes, nuclei and

Seismic waves flow through Earth’s solid and liquid material differently, allowing Earth scientists to determine various aspects of the composition of the Earth’s interior. Broadband seismology looks at a broad spectrum of waves for high-resolution imaging. Lara Wagner collects this data from continental areas of the planet that have not been studied before to better understand the elastic properties of Earth’s crust and upper mantle, the rigid region called the lithosphere.

By its nature seismology is indirect research and has limitations for interpreting features like temperature, melting, and exact composition. So Wagner looks at the bigger picture. She integrates her data with

Mark Phillips wears several hats. He is the Associate Director for Magellan, the Director for Las Campanas Observatory, and a world-renowned supernova expert. Most stars die quietly by cooling down and “turning off” when they have exhausted their nuclear fuel. But, a few stars end in a gigantic thermonuclear explosion known as a supernova. These objects remain extremely bright for a few weeks, sometimes outshining the galaxies in which they reside. Their extreme brightness at maximum makes them potentially powerful “standard candles”—baselines for probing distances, geometry, and expansion of the universe.

Type Ia supernovae are especially attractive. Thought to be the complete

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100