Washington, DC— An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool red parent star every 11 days and has a temperature...
Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Youtube URL: 

    Learning about ‪#photosynthesis is fun! Life as we know it on Earth couldn't exist without this amazing process. And what better way to understand and appreciate everything that plants and algae do for us than through this amazing song from Carnegie Plant Biology and Jonathan Mann?
    Jonathan Mann with Liz Freeman Rosenzweig and 3 others.

    Do the Photosynthesis dance! It's easy and fun!

    I made this video and song with the very fine plant biologists at the Jonikas lab! They study algae!

    It was funded by the NSF.

    Watch This Video

Stanford, CA— With a growing world population and a changing climate, understanding how agriculturally important plants respond to drought is crucial. New work from a team led by Carnegie’s José Dinneny discovers a strategy employed by grasses in drought conditions that could potentially be harnessed to improve crop productivity.

Explore this Story

 An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool red parent star every 11 days and has a temperature suitable for liquid water to exist on its surface, if it were present. 

Explore this Story

Scientists have looked for different ways to force hydrogen into a metallic state for decades. Metallic hydrogen is a holy grail for materials science because it could be used for superconductors, materials that have no resistance to the flow of electrons, increasing electrical efficiency many times over. For the first time researchers, led by Carnegie’s Viktor Struzhkin, have experimentally produced a new class of materials blending hydrogen with sodium that could alter the superconductivity landscape.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Baltimore, MD— As we age, the function and regenerative abilities of skeletal muscles deteriorate, which means it is difficult for the elderly to recover from injury or surgery. New work from Carnegie’s Michelle Rozo, Liangji Li, and Chen-Ming Fan demonstrates that a protein called b1-integrin is crucial for muscle regeneration. Their findings, published by Nature Medicine, provide a promising target for therapeutic intervention to combat muscle aging or disease.

Explore this Story
Carnegie researchers recently constructed genetically encoded FRET sensors for a variety of important molecules such as glucose and glutamate. The centerpiece of these sensors is a recognition element derived from the superfamily of bacterial binding protiens called periplasmic binding protein (...
Explore this Project
Fifty years ago, Americans led the world in math and science, claiming some of the most important inventions and technological breakthroughs of the 20th century.  Today, American 15-year-olds rank 25th in math compared to their peers worldwide.  Math for America strives to reclaim America’s...
Explore this Project
The High Pressure Collaborative Access Team (HPCAT) was established to advance cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory in Illinois. The integrated HPCAT facility has...
Explore this Project
Capital Science Evening Lectures
Thursday, September 29, 2016 -
6:45pm to 8:00pm

Everything in nature is regulated—from the number of vital molecules found in our bloodstreams to the number of lions living on an African savanna. Over the past 50 years, two revolutions have...

Explore this Event
Capital Science Evening Lectures
Thursday, October 13, 2016 -
6:45pm to 8:00pm

Everyone learns in school that DNA is the genetic coding material  found in all organisms. However, the information storage capacity that enables DNA to function in the world of biology can also...

Explore this Event
Capital Science Evening Lectures
Wednesday, November 2, 2016 -
6:45pm to 8:00pm

Over the last 30 years, the business of understanding and modeling the Earth's biosphere has evolved. During the early 1980s, simple climate models showed that global warming could be a real...

Explore this Event
Alycia Weinberger wants to understand how planets form, so she observes young stars in our galaxy and their disks, from which planets are born. She also looks for and studies planetary systems. Studying disks surrounding nearby stars help us determine the necessary conditions for planet formation....
Meet this Scientist
Yixian Zheng’s lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use...
Meet this Scientist
Anat Shahar is pioneering a field that blends isotope geochemistry with high-pressure experiments to examine planetary cores and the Solar System’s formation, prior to planet formation, and how the planets formed and differentiated. Stable isotope geochemistry is the study of how physical and...
Meet this Scientist

Explore Carnegie Science

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, ESO, European Southern Observatory, Proxima Centauri, Proxima b
August 24, 2016

Washington, DC— An international team of astronomers including Carnegie’s Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool red parent star every 11 days and has a temperature suitable for liquid water to exist on its surface, if it were present. This rocky world is a little more massive than the Earth and is the closest exoplanet to us; it may even be the closest possible abode for life beyond our own Sun. A paper describing this milestone finding is published by Nature.

Just over four light-years from our Solar System sits a red dwarf star named Proxima Centauri.

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Jackie Faherty, American Museum of Natural History
August 15, 2016

Washington, DC— Brown dwarfs are smaller than stars, but more massive than giant planets. As such, they provide a natural link between astronomy and planetary science. However, they also show incredible variation when it comes to size, temperature, chemistry, and more, which makes them difficult to understand, too.

New work led by Carnegie’s Jacqueline Faherty surveyed various properties of 152 suspected young brown dwarfs in order to categorize their diversity and found that atmospheric properties may be behind much of their differences, a discovery that may apply to planets outside the solar system as well. The work is published by The Astrophysical Journal Supplement Series.

August 15, 2016

Benjamin Aderson, currently Managing Director of Legal Affairs at Pew Research Center, will join the Carnegie Institution for Science as its first General Counsel on August 15, 2016. 

Mr. Aderson brings more than 10 years of experience providing legal counsel to organizations and serving as a corporate secretary.  At Pew Research Center, he oversaw all legal matters, including transactions, compliance, governance, and risk management.  Previously, Mr. Aderson served as Senior Vice President, Operations, General Counsel and Secretary at the global technology trade association, TechAmerica.  He has also worked in Congress, on political campaigns, in private practice, and at the

Carnegie Science, Carnegie Institution for Science, Carnegie Institution, Carnegie
August 12, 2016

Washington, DC— Well-understood physical and chemical processes can easily explain the alleged evidence of a secret, large-scale atmospheric spraying program, commonly referred to as “chemtrails” or “covert geoengineering,” concludes a new study from Carnegie Science, University of California Irvine, and the nonprofit organization Near Zero.

Some groups and individuals erroneously believe that the long-lasting condensation trails, or contrails, left behind aircraft are evidence of a secret large-scale spraying program. They call these imagined features “chemtrails.” Adherents of this conspiracy theory sometimes attribute this alleged spraying to the government and sometimes to

Washington, D.C.—Sean Solomon, director of Carnegie’s Department of Terrestrial Magnetism from 1992 until 2012 will receive the nation’s highest scientific award, the National Medal of Science at a White House ceremony later this year.

Sean Solomon's career has been characterized by an uncommon combination of science and leadership. He established important new paradigms in the Earth and planetary sciences, while simultaneously leading the field of geophysics. Solomon is the principal investigator and creative force behind the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission to Mercury, which has had a bounty of discoveries that have changed what

Pasadena, CA—The lightest few elements in the periodic table formed minutes after the Big Bang.  Heavier chemical elements are created by stars, either from nuclear fusion in their interiors or in catastrophic explosions.  However, scientists have disagreed for nearly 60 years about how the heaviest elements, such as gold and lead, are manufactured.  New observations of a tiny galaxy discovered last year show that these heavy elements are likely left over from rare collisions between two neutron stars. The work is published by Nature.

The new galaxy, called Reticulum II because of its location in the southern constellation Reticulum, commonly known as The Net, is one of the

Washington, D.C.— Carnegie Institution scientist Ho-kwang (Dave) Mao has been elected as a Foreign Member of the Royal Society of London, the National Academy of the United Kingdom and one of the world’s most prestigious scientific societies. The statutes of the Royal Society, which was chartered in 1662, "require selection of Foreign Members from among persons of the greatest eminence for their scientific discoveries and attainments." The society cites Mao’s “extraordinary creative impact” in high-pressure science and related technology development for over 40 years. The induction ceremony will take place in London on July 11, 2008.

 

Mao is a world leader in the study of

Baltimore, MD--Cells in the body wear down over time and die. In many organs, like the small intestine, adult stem cells play a vital role in maintaining function by replacing old cells with new ones. Learning about the nature of tissue stem cells can help scientists understand exactly how our organs are built, and why some organs generate cancer frequently, but others only rarely.

New work from Carnegie’s Alexis Marianes and Allan Spradling used some of the most experimentally accessible tissue stem cells, the adult stem cells in the midsection of the fruit fly gut, with surprising results. Their findings are published by eLife.

Like the small intestine in mammals, the

Fresh water constitutes less than 1% of the surface water on earth, yet the importance of this simple molecule to all life forms is immeasurable. Water represents the most vital reagent for chemical reactions occurring in a cell. In plants, water provides the structural support necessary for plant growth. It acts as the carrier for nutrients absorbed from the soil and transported to the shoot. It also provides the chemical components necessary to generate sugar and biomass from light and carbon dioxide during photosynthesis. While the importance of water to plants is clear, an understanding as to how plants perceive water is limited. Most studies have focused on environmental conditions

DC Stem Network

The DC STEM Network unites community partners to help inspire and prepare all DC youth to succeed, lead, and innovate in STEM fields and beyond. The Network connects educators, industry experts, community organizations, and colleges to support STEM learning across the city. The Network was formed in October 2014 through a partnership between Carnegie Science’s Carnegie Academy for Science Education and the DC Office of the State Superintendent of Education.  Over 200 community partners have already engaged in the effort to enhance STEM learning opportunities for DC students and teachers within the classroom, outside of the classroom and in the workplace.

This past year, the

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines,

The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord.

The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to feed and swim, and within three months they are ready to reproduce. They are also prolific breeders. Most importantly the embryos are transparent, allowing scientists to watch the nervous system develop and to

While the planets in our Solar System are astonishingly diverse, all of them move around the Sun in approximately the same orbital plane, in the same direction, and primarily in circular orbits. Over the past 25 years Butler's work has focused on improving the measurement precision of stellar Doppler velocities, from 300 meters per second in the 1980s to 1 meter a second in the 2010s to detect planets around other stars. The ultimate goal is to find planets that resemble the Earth.

Butler designed and built the iodine absorption cell system at Lick Observatory, which resulted in the discovery of 5 of the first 6 known extrasolar planets.  This instrument has become the de facto

For three decades, Chris Field has pioneered novel approaches to ecosystem research to understand climate and environmental changes. He is the founding director of the Carnegie Institution’s Department of Global Ecology on the Stanford University campus—home to a small, but remarkably productive team of researchers who investigate the basics of climate change. Field has authored more than 200 scientific publications and is cochair of the U. N.'s Intergovernmental Panel on Climate Change (IPCC) Working Group 2. The IPCC Fourth Assessment, for which Field was a coordinating author, was published in 2007. He was coeditor of the March 2012 IPCC Special Report on Managing the Risks of Extreme

Wolf Frommer believes that understanding the basic mechanisms of plant life can help us solve problems in agriculture, the environment and medicine, and  even provide understanding of human diseases. He and his colleagues develop fundamental tools and technologies that advance our understanding of glucose, sucrose, ammonium, amino acid, and nucleotide transport in plants.

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell’s outer membrane, which seals and protects all living cells, to the cell’s interior. These transported molecules include sugars, which can be used to fuel growth or to respond to chemical signals of

One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for developing crops for the changing climate.

The Dinneny  lab focuses on understanding how developmental processes such as cell-type specification regulate responses to environmental change. Most studies have considered the organ or even the whole organism as a single responsive unit and ignore the potential diversity of responses by the various cell-types composing an organism. Dinneny has