Dr. Eric Isaacs Begins as 11th President of the Carnegie Institution for Science

Dr. Eric D. Isaacs begins his tenure as the 11th president of the Carnegie Institution on July 2, 2018.  Isaacs joins Carnegie from the University of Chicago where he has been the Robert A. Millikan Distinguished Service Professor, Department of Physics and the James Franck Institute Executive Vice President for Research, Innovation and National Laboratories. 

 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • An international team including five Carnegie astronomers has discovered a frozen Super-Earth orbiting Barnard’s star, the closest single star to our own Sun. The Planet Finder Spectrograph on Carnegie’s Magellan II telescope was integral to the discovery, which is published in Nature. To find this cold Super-Earth, the team combined 20 years of data from seven different instruments, all of which were “stitched” together to form one of the largest and most-extensive datasets ever used for this method of planet detection.

    Explore this Story

Almost half of our DNA is made up of jumping genes, moving around the genome in developing sperm and egg cells. Given their ability to jump around the genome, their invasion can trigger DNA damage and mutations often leading to animal sterility or even death and threatening species survival. Organisms have survived these invasions, but little is known about where this adaptability comes from. Now, Carnegie researchers have discovered that reproductive stem cells boost production of non-coding RNA elements that suppress jumping gene activity and activate a DNA repair process allowing for normal egg development. 

 

Explore this Story

Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian meteorites from a team led by Carnegie’s Andrew Steele. The discovery has major implications for the astrobiology field. A similar process could occur anywhere that igneous rocks are surrounded by brines, including the subsurface oceans of Jupiter’s moon Europa and Saturn’s moon Enceladus.

Explore this Story

Paul G. Allen Philanthropies and a consortium of partners, including Carnegie, unveiled the Allen Coral Atlas, a pioneering effort that uses high-resolution satellite imagery and advanced analytics to map and monitor the world’s coral reefs in unprecedented detail. At launch, the Allen Coral Atlas offers the highest-resolution, most up-to-date global image of the world’s coral reefs ever captured, and the first detailed maps showing the composition and structure of five important reefs located throughout the world.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Carnegie’s Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova, possibly creating a compact neutron star binary system. Piro’s theoretical work provided crucial context for the discovery. 

Explore this Story
Carnegie is renowned for its post-doctoral and graduate student fellowship programs, which operate on each of the Carnegie campuses. Our fellows participate fully in the institution’s vigorous intellectual life, and have complete access to the laboratory instruments and facilities at the...
Explore this Project
Anna Michalak’s team combined sampling and satellite-based observations of Lake Erie with computer simulations and determined that the 2011 record-breaking algal bloom in the lake was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake...
Explore this Project
Carnegie Academy for Science Education
Scientific literacy is now recognized to be crucial for our nation's progress in the 21st century. The Carnegie Institution, a pre-eminent basic research organization, has fostered the development of scientific knowledge since the early 20th century. For many years, this meant the training of...
Explore this Project
Capital Science Evening Lectures
Thursday, December 6, 2018 - 6:30pm to 7:45pm

Earthquakes, floods, tsunamis, hurricanes, and volcanoes—they all stem from the very same forces that give our planet life. It is only when these forces exceed our ability to withstand them...

Explore this Event
Staff associate Christoph Lepper, with colleagues, overturned previous research that identified critical genes for making muscle stem cells. It turns out that the genes that make muscle stem cells in the embryo are surprisingly not needed in adult muscle stem cells to regenerate muscles after...
Meet this Scientist
Erik Hauri studies how planetary processes affect the chemistry of the Earth, Moon and other objects. He also uses that chemistry to understand the origin and evolution of planetary bodies. The minerals that are stable in planetary interiors determine how major elements such as silicon, magnesium,...
Meet this Scientist
Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic...
Meet this Scientist

Explore Carnegie Science

Artist’s impression of Barnard’s Star planet under the orange tinted light from the star.  Credit: IEEC/Science-Wave - Guillem Ramisa
November 14, 2018

Washington, DC—An international team including five Carnegie astronomers has discovered a frozen Super-Earth orbiting Barnard’s star, the closest single star to our own Sun. The Planet Finder Spectrograph on Carnegie’s Magellan II telescope was integral to the discovery, which is published in Nature.

Just six light-years from Earth, Barnard’s star is our fourth-closest neighboring star overall, after Alpha Centauri’s triple-star system. It is smaller and older than our Sun and among the least-active known red dwarfs.

To find this cold Super-Earth, the team—which included Carnegie’s Paul Butler, Johanna Teske, Jeff Crane, Steve

November 1, 2018

Baltimore, MD—Since Carnegie Institution’s Barbara McClintock received her Nobel Prize on her discovery of jumping genes in 1983, we have learned that almost half of our DNA is made up of jumping genes—called transposons. Given their ability of jumping around the genome in developing sperm and egg cells, their invasion triggers DNA damage and mutations. This often leads to animal sterility or even death, threatening species survival. The high abundance of jumping genes implies that organisms have survived millions, if not billions, of transposon invasions. However, little is known about where this adaptability comes from. Now, a team of Carnegie researchers has

Mars mosaic courtesy of NASA
October 31, 2018

Washington, DC—Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian meteorites from a team led by Carnegie’s Andrew Steele published in Science Advances.

The group’s analysis of a trio of Martian meteorites that fell to Earth—Tissint, Nakhla, and NWA 1950—showed that they contain an inventory of organic carbon that is remarkably consistent with the organic carbon compounds detected by the Mars Science Laboratory’s rover missions.

In 2012, Steele led a team that determined the organic carbon found in 10 Martian

October 29, 2018

Washington, DC—Today, Paul G. Allen Philanthropies and a consortium of partners, including Carnegie, unveiled the Allen Coral Atlas, a pioneering effort that uses high-resolution satellite imagery and advanced analytics to map and monitor the world’s coral reefs in unprecedented detail. At launch, the Allen Coral Atlas offers the highest-resolution, up-to-date global image of the world’s coral reefs ever captured, and the first detailed maps showing the composition and structure of five important reefs located throughout the world.

“Paul challenged us with a bold and audacious goal—save coral reefs around the world,” said Bill Hilf, CEO of

December 6, 2018

Earthquakes, floods, tsunamis, hurricanes, and volcanoes—they all stem from the very same forces that give our planet life. It is only when these forces exceed our ability to withstand them that they become disasters. Science and engineering can be used to understand extreme events and to design our cities to be resilient, but we must overcome the psychological drive to normalization that keeps humanity from believing that we could experience anything worse than what we have already survived. As climate change increases the intensity of extreme storms and and urban population growth increases the complexity of our life-sustaining systems, we must examine the history of natural

The Earthbound Planet Search Program has discovered hundreds of planets orbiting nearby stars using telescopes at Lick Observatory, Keck Observatory, the Anglo-Australian Observatory, Carnegie's Las Campanas Observatory, and the ESO Paranal Observatory.  Our multi-national team has been collecting data for 30 years, using the Precision Doppler technique.  Highlights of this program include the detection of five of the first six exoplanets, the first eccentric planet, the first multiple planet system, the first sub-Saturn mass planet, the first sub-Neptune mass planet, the first terrestrial mass planet, and the first transit planet.Over the course of 30 years we have

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

Today, humanity is increasingly aware of the impact it has on the environment and the difficulties caused when the environment impacts our communities. Environmental change can be particularly harsh when the plants we use for food, fuel, feed and fiber are affected by this change. High salinity is an agricultural contaminant of increasing significance. Not only does this limit the land available for use in agriculture, but in land that has been used for generations, the combination of irrigation and evaporation gradually leads to increasing soil salinity.

The Dinneny lab focuses on understanding how developmental processes such as cell-type specification regulate responses to

Superdeep diamonds are  tiny time capsules carrying unchanged impurities made eons ago and providing researchers with important clues about Earth’s formation.  Diamonds derived from below the continental lithosphere, are most likely from the transition zone (415 miles, or 670km deep) or the top of the lower mantle. Understanding diamond origins and compositions of the high-pressure mineral phases has potential to revolutionize our understanding of deep mantle circulation.

There is a lot of folklore about left-brain, right-brain differences—the right side of the brain is supposed to be the creative side, while the left is the logical half. But it’s much more complicated than that. Marnie Halpern studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry.

Using the tiny zebrafish, Danio rerio, Halpern explores how regional specializations occur within the neural tube, the embryonic tissue that develops into the brain and spinal cord. The zebrafish is ideal for these studies because its basic body plan is set within 24 hours of fertilization. By day five, young larvae are able to

Andrew Newman works in several areas in extragalactic astronomy, including the distribution of dark matter--the mysterious, invisible  matter that makes up most of the universe--on galaxies, the evolution of the structure and dynamics of massive early galaxies including dwarf galaxies, ellipticals and cluster. He uses tools such as gravitational lensing, stellar dynamics, and stellar population synthesis from data gathered from the Magellan, Keck, Palomar, and Hubble telescopes.

Newman received his AB in physics and mathematics from the Washington University in St. Louis, and his MS and Ph D in astrophysics from Caltech. Before becomming a staff astronomer in 2015, he was a

Plants are not as static as you think. David Ehrhardt combines confocal microscopy with novel visualization methods to see the three-dimensional movement  within live plant cells to reveal the other-worldly cell choreography that makes up plant tissues. These methods allow his group to explore cell-signaling and cell-organizational events as they unfold.

These methods allow his lab to investigate plant cell development and structure and molecular genetics to understand the organization and dynamic behaviors of molecules and organelles. The group tackles how cells generate asymmetries and specific shapes. A current focus is how the cortical microtubule cytoskeleton— an

Ronald Cohen primarily studies materials through first principles research—computational methods that begin with the most fundamental properties of a system, such as the nuclear charges of atoms, and then calculate what happens to a material under different conditions, such as pressure and temperature. He particularly focuses on properties of materials under extreme conditions such as high pressure and high temperature. This research applies to various topics and problems in geophysics and technological materials.

Some of his work focuses on understanding the behavior of high-technology materials called ferroelectrics—non-conducting crystals with an electric dipole