Dr. Eric Isaacs Begins as 11th President of the Carnegie Institution for Science

Dr. Eric D. Isaacs begins his tenure as the 11th president of the Carnegie Institution on July 2, 2018.  Isaacs joins Carnegie from the University of Chicago where he has been the Robert A. Millikan Distinguished Service Professor, Department of Physics and the James Franck Institute Executive Vice President for Research, Innovation and National Laboratories. 

 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

The line that separates stars from brown dwarfs may soon be clearer thanks to new work led by Carnegie’s Serge Dieterich. His team’s findings demonstrate that brown dwarfs can be more massive than astronomers previously thought.

Explore this Story

The Pew Charitable Trust has awarded Carnegie’s Steve Farber and colleague John F. Rawls of Duke University a $200,000 grant to investigate how dietary nutrients, such as fats, alter the ability to sense glucose in the gut—a process that involves the microbial ecosystem in the gut. Results from this research could reveal how microbes and nutrients in the gut environment interact and could provide new strategies to combat disorders such as diabetes and obesity.

Explore this Story

Washington, D.C.— Former Secretary of Energy in the George W. Bush administration (2005-2009) and a Carnegie trustee from 2009 until 2013, Samuel Bodman died at the age of 79 on September 7, 2018, in El Paso Texas, after a lengthy illness.

Before serving as Energy Secretary, Bodman served as Deputy Secretary of the Treasury between 2003 and 2005, and Deputy Secretary of Commerce between 2001 and 2003.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

Carnegie geochemist Erik Hauri, whose work upended our understanding of the Moon’s formation and the importance of water in Earth’s interior, died Wednesday in North Potomac, MD, following a battle with cancer. He was 52.

Explore this Story
CALL FOR PROPOSALS Following Andrew Carnegie’s founding encouragement of liberal discovery-driven research, the Carnegie Institution for Science offers its scientists a new resource for pursuing bold ideas. Carnegie Science Venture grants are internal awards of up to $100,000 that are intended to...
Explore this Project
Stem cells make headline news as potential treatments for a variety of diseases. But undertstanding the nuts and bolts of how they develop from an undifferentiated cell  that gives rise to cells that are specialized such as organs, or bones, and the nervous system, is not well understood.  The...
Explore this Project
Coral reefs are havens for marine biodiversity and underpin the economies of many coastal communities. But they are very sensitive to changes in ocean chemistry resulting from greenhouse gas emissions, as well as to pollution, warming waters, overdevelopment, and overfishing. Reefs use a mineral...
Explore this Project
Capital Science Evening Lectures
Wednesday, October 3, 2018 - 6:30pm to 7:45pm

Adult brain connections are precise, but such precision emerges during critical developmental periods when synapses—the delicate contacts between neurons that relay and store information—are...

Explore this Event
Science in the Neighborhood Series
Tuesday, October 16, 2018 - 7:00pm to 8:15pm

All of our DNA, or genetic code, is stored like wound-up string in our cells' chromosomes. The two ends of a chromosome consist of short DNA sequences that are repeated many times. These sequences...

Explore this Event
Capital Science Evening Lectures
Wednesday, October 17, 2018 - 6:30pm to 7:45pm

Why create national parks? Although the process of designating new parkland is lengthy and complex, national parks offer ecological, cultural, and economic benefits, while also guaranteeing...

Explore this Event
Gwen Rudie
Gwen Rudie studies the chemical and physical properties of very distant galaxies and their surrounding gas in order to further our understanding of the processes that are central to the formation and development of galaxies. Critical to this research is our ability to trace the raw materials of...
Meet this Scientist
Arthur Grossman believes that the future of plant science depends on research that spans ecology, physiology, molecular biology and genomics. As such, work in his lab has been extremely diverse. He identifies new functions associated with photosynthetic processes, the mechanisms of coral bleaching...
Meet this Scientist
One way to adapt to climate change is to understand how plants can thrive in the changing environment. José Dinneny looks at the mechanisms that control environmental responses in plants, including responses to salty soils and different moisture conditions—work that provides the foundation for...
Meet this Scientist

Explore Carnegie Science

September 18, 2018

Ethan Greenblatt, a senior postdoctoral associate in Allan Spradling’s lab at the Department of Embryology, has been awarded the eleventh Postdoctoral Innovation and Excellence Award. Greenblatt has made a major impact on biological science, particularly with his research identifying genetic factors underlying fragile X syndrome, the most common cause of autism.

Recipients of these postdoctoral awards are given a cash prize for their exceptionally creative approaches to science, strong mentoring, and contributing to the sense of campus community. A celebration is also held in their honor. These awards are made through nominations from the departments and are chosen by the Office

Artist's conception of the Epsilon Indi system. Illustration is by Roberto Molar Candanosa and Sergio Dieterich, courtesy of the Carnegie Institution for Science.
September 17, 2018

Washington, DC—The line that separates stars from brown dwarfs may soon be clearer thanks to new work led by Carnegie’s Serge Dieterich. Published by The Astrophysical Journal, his team’s findings demonstrate that brown dwarfs can be more massive than astronomers previously thought.

To shine bright, stars need the energy derived from the fusion of hydrogen atoms deep in their interiors.  If too small, hydrogen fusion can’t occur, so the object cools, darkens, and turns into something called a brown dwarf.

Many researchers are trying to determine the mass, temperature, and brightness of objects on both sides of this divide.

“Understanding the boundary that separates

September 14, 2018

Baltimore, MD—The Pew Charitable Trust has awarded Carnegie’s Steve Farber and colleague John F. Rawls of Duke University a $200,000 grant to investigate how dietary nutrients, such as fats, alter the ability to sense glucose in the gut—a process that involves the microbial ecosystem in the gut. Results from this research could reveal how microbes and nutrients in the gut environment interact and could provide new strategies to combat disorders such as diabetes and obesity.

Rawls has investigated host-microbe interactions, and Farber studies lipid­ metabolism. Together they will use the zebrafish for this work. Zebrafish are entirely clear while embryos and are ideal for observing

September 13, 2018

Washington, D.C.— Former Secretary of Energy in the George W. Bush administration (2005-2009) and a Carnegie trustee from 2009 until 2013, Samuel Bodman died at the age of 79 on September 7, 2018, in El Paso Texas, after a lengthy illness.

Before serving as Energy Secretary, Bodman served as Deputy Secretary of the Treasury between 2003 and 2005, and Deputy Secretary of Commerce between 2001 and 2003.

Born in Chicago in 1938, Bodman went on to receive a B.S. in chemical engineering from Cornell in 1961 and a Ph.D. from MIT in 1965. He then taught at MIT until 1970 and worked at a venture capital firm later joining Fidelity Investments. In 1987 he was appointed Chairman and

October 3, 2018

Adult brain connections are precise, but such precision emerges during critical developmental periods when synapses—the delicate contacts between neurons that relay and store information—are either pruned or grow as part of a learning driven process. Understanding the molecules and mechanisms of this synapse pruning may lead to treatments for developmental disorders and Alzheimer’s disease.

Dr. Carla Shatz: Sapp Family Provostial Professor & Professor of Biology and Neurobiology, Stanford University; David Starr Jordan Director, Stanford Bio-X James H. Clark Center; Kavli Prize Laureate

The conversation will be moderated by George Washington University School of Media

October 16, 2018

All of our DNA, or genetic code, is stored like wound-up string in our cells' chromosomes. The two ends of a chromosome consist of short DNA sequences that are repeated many times. These sequences, called telomeres, protect the ends of the chromosomes. Carnegie's own Barbara McClintock, one of the first scientists to study telomeres, discovered something different about the DNA at the end of chromosomes in corn, and realized it was a unique sequence that created a “cap.” Since then, scientists have made a lot of progress in understanding the function of these telomeres, how they are created, and how they relate to cell health and aging.Two telomere research experts will shed light on the

October 17, 2018

Why create national parks? Although the process of designating new parkland is lengthy and complex, national parks offer ecological, cultural, and economic benefits, while also guaranteeing longterm conservation of fragile ecosystems. Founded by Kristine McDivitt Tompkins and her latehusband, Douglas, Tompkins Conservation and its partners have protected approximately 13 million acres of parkland in Chile and Argentina. Mrs. Tompkins will answer the question of why national parks are a worthwhile investment by drawing on her years as the CEO of Patagonia, Inc., in addition to her more than two decades leading initiatives to rewild and restore biodiversity in South America.

October 18, 2018

Earth is a water world. More than 70 percent of our planet's surface is covered in water, and its presence allowed for the emergence and sustenance of life. But where did Earth’s water come from? Why is our planet apparently so wet and why are other planets so dry? Water is not only prevalent on the outside of our planet, but there may be oceans of water in its interior, too. How much water exists inside and how does it get down there and back out again? What is the deep Earth's role in regulating the water on the surface? Dr. Walter will investigate these questions as we probe the depths of our "Deep Blue Planet."

Dr. Michael Walter: Director, Geophysical Laboratory, Carnegie

In March 2014, a technical support unit (TSU) of ten, headquartered at Global Ecology, had successfully completed a herculean management effort for the 2000-page assessment Climate Change 2014: Impacts, Adaptation, and Vulnerability, including two summaries. They were issued by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), Working Group II co-chaired by Chris Field, Global Ecology director, with science co-directors Katie Mach and Mike Mastrandrea managing the input of over 190 governments and nearly 2,000 experts from around the world.

The IPCC, established in 1988, assesses information about climate change and its impacts. In September 2008, Field was

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting. The goal of the Farber lab is to better understand the cell and molecular biology of lipids within digestive organs by exploiting the many unique attributes of the clear zebrafish larva  to visualize lipid uptake and processing in real time.  Given their utmost necessity for proper cellular function, it is not surprising that defects in lipid metabolism underlie a number of human diseases, including obesity, diabetes, and atherosclerosis.

The Farber

Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth’s carbon-bearing systems. The Deep Carbon Observatory is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a

CDAC is a multisite, interdisciplinary center headquartered at Carnegie to advance and perfect an extensive set of high pressure and temperature techniques and facilities, to perform studies on a broad range of materials in newly accessible pressure and temperature regimes, and to integrate and coordinate static, dynamic and theoretical results. The research objectives include making highly accurate measurements to understand the transitions of materials into different phases under the multimegabar pressure rang; determine the electronic and magnetic properties of solids and fluid to multimegabar pressures and elevated temperatures; to bridge the gap between static and dynamic

Frederick Tan holds a unique position at Embryology in this era of high-throughput sequencing where determining DNA and RNA sequences has become one of the most powerful technologies in biology. DNA provides the basic code shared by all our cells to program our development. While there are about 30,000 human genes, 98% of DNA sequences are comprised of repetitive and regulatory sequences within and between genes. Measuring the specific set of DNA sequences that are transcribed into RNA helps reveal what and how our tissues are doing by showing which genes are active.

Modern sequencing platforms, such as the Illumina HiSeq 2000, generate only short, ordered sequences, usually 100

John Mulchaey, director of the Observatories, serves as co-interim president of Carnegie as of January 1, 2018. He investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also a scientific editor for The Astrophysical Journal and is actively involved in public outreach and education.

Most galaxies including our own Milky Way, exist in collections known as groups, which are the most common galaxy systems and are important laboratories for studying galaxy formation and evolution. Mulchaey studies galaxy groups to understand the processes that affect most galaxies

Mark Phillips is the Las Campanas Observatory (LCO) Director Emeritus. From 2006 to 2017 Phillips served as the Associate Director for Magellan, and from 2014 to 2017 he was the interim LCO Director. He is a world-renowned supernova expert. Most stars die quietly by cooling down and “turning off” when they have exhausted their nuclear fuel. But, a few stars end in a gigantic thermonuclear explosion known as a supernova. These objects remain extremely bright for a few weeks, sometimes outshining the galaxies in which they reside. Their extreme brightness at maximum makes them potentially powerful “standard candles”—baselines for probing distances, geometry, and expansion of the universe

Nick Konidaris is a staff scientist at the Carnegie Observatories and Instrument Lead for the SDSS-V Local Volume Mapper (LVM). He works on a broad range of new optical instrumentation projects in astronomy and remote sensing. Nick's projects range from experimental to large workhorse facilities. On the experimental side, he recently began working on a new development platform for the 40-inch Swope telescope at Carnegie's Las Campanas Observatory that will be used to explore and understand the explosive universe.

 Nick and his colleagues at the Department of Global Ecology are leveraging the work on Swope to develop a new airborne spectrograph that will be used to provide a direct