John Mulchaey and Yixian Zheng named interim co-presidents

Carnegie Observatories Director John Mulchaey and Carnegie Embryology Director Yixian Zheng jointly will serve in the Office of the President on an interim basis starting January 1, 2018. Their selection as interim co-presidents was a unanimous decision of the Carnegie Board of Trustees. 

Explore this Story

Give to Carnegie

You Can Support Scientific Discovery.

Learn More

  • Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients. New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. Salinity has deleterious effects on plant health and limits crop yields, because salt inhibits water uptake and can be toxic for plants. But Dinneny and his collaborators, including Alice Cheung at the University of Massachusetts Amherst and Carnegie’s Wei Feng determined a never-before-described effect that salt has on the plant cell wall.

    Explore this Story
  • Youtube URL: 

    Drs. Peter and Rosemary Grant
    Professors emeriti, Princeton University
    Charles Darwin said evolution was too slow to be observed, but modern studies have corrected this assertion. The Grants discussed their decades of work studying Darwin’s finches on the Galápagos Island of Daphne Major, as chronicled in the Pulitzer Prize-winning book The Beak of the Finch: A Story of Evolution in Our Time. Their research showed that Darwin’s finches evolve repeatedly when the environment changes. They have even observed the initial stages of new species formation!

     

    Watch This Video

Water is so common that we take it for granted. Yet water also has very strange properties compared to most other liquids. In addition to ordinary water and water vapor, or steam, there are at least 17 forms of water ice, and two proposed forms of super-cooled liquid water. New work from Carnegie high-pressure geophysicists Chuanlong Lin, Jesse Smith, Stanislav Sinogeikin, and Guoyin Shen found evidence of the long-theorized, difficult-to-see low-density liquid phase of water.

Explore this Story

A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new research led by Carnegie’s Johanna Teske. This new information provides evidence to help astronomers better understand the process by which such planets form.

Explore this Story

A team of experimental and computational scientists led by Carnegie’s Tim Strobel and Venkata Bhadram have synthesized a long sought-after cubic crystalline phase of titanium nitride, Ti3N4, which is a semiconductor with promising excellent mechanical and wear resistance properties.

Explore this Story

Stay Connected

Sign Up to Receive Carnegie Communications. 

If you are interested in receiving any of our materials, learn more

It is well understood that Earth formed from the accretion of matter surrounding the young Sun. Eventually the planet grew to such a size that denser iron metal sank inward, to form the beginnings of the Earth’s core, leaving the silicate-rich mantle floating above. But new work from a team led by Carnegie’s Yingwei Fei and Carnegie and the Smithsonian’s Colin Jackson argues that this mantle and core separation was not such an orderly process.

Explore this Story
  • Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, galaxy, and Solar System. New work from a team of Carnegie cosmochemists published by Science Advances reports analyses of carbon-rich dust grains extracted from meteorites that show that these grains formed in the outflows from one or more type II supernovae more than two years after the progenitor stars exploded. This dust was then blown into space to be eventually incorporated into new stellar systems, including in this case, our own.

    Explore this Story
The Carnegie-Spitzer-IMACS (CSI) survey, currently underway at the Magellan-Baade 6.5m telescope in Chile, has been specifically designed to characterize normal galaxies and their environments at a distance of about 4 billion years post Big Bang, expresses by astronomers as  z=1.5. The survey...
Explore this Project
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society’s energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth’s variable and uncertain climate. Yet in spite of carbon’s importance, scientists remain...
Explore this Project
The Marnie Halpern laboratory studies how left-right differences arise in the developing brain and discovers the genes that control this asymmetry. Using the tiny zebrafish, Danio rerio, they explores how regional specializations occur within the neural tube, the embryonic tissue that develops into...
Explore this Project
Special Events
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Carnegie Origins
Tuesday, March 6, 2018 - 5:30pm to 9:00pm

How and when did life originate on Earth? How many other Earth-like planets exist in our Solar System and universe?

From the beginnings of recorded history, humans have had a fascination...

Explore this Event
Broad Branch Road Neighborhood Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Peter van Keken
Thursday, March 22, 2018 - 6:30pm to 7:45pm

A little over 50 years ago, the theory of plate tectonics emerged to provide a unifying theory for the dynamic behavior of the solid Earth as expressed by earthquakes, volcanoes, mountain building...

Explore this Event
Capital Science Evening Lectures
Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
Thursday, March 29, 2018 - 6:30pm to 8:00pm

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth....

Explore this Event
Geochemist Steven Shirey is researching how Earth's continents formed. Continent formation spans most of Earth's history, continents were key to the emergence of life, and they contain a majority of Earth’s resources. Continental rocks also retain the geologic record of Earth's ancient geodynamic...
Meet this Scientist
Scientists simulate the high pressures and temperatures of planetary interiors to measure their physical properties. Yingwei Fei studies the composition and structure of planetary interiors with high-pressure instrumentation including the multianvil apparatus, the piston cylinder, and the diamond...
Meet this Scientist
Volcanologist Diana Roman is interested in the mechanics of how magma moves through the Earth’s crust, and in the structure, evolution, and dynamics of volcanic conduit systems. Her ultimate goal is to understand the likelihood and timing of volcanic eruptions. Most of Roman’s research focuses on...
Meet this Scientist

Explore Carnegie Science

February 16, 2018

Stanford, CA—Roots face many challenges in the soil in order to supply the plant with the necessary water and nutrients.  New work from Carnegie and Stanford University’s José Dinneny shows that one of these challenges, salinity, can cause root cells to explode if the risk is not properly sensed. The findings, published by Current Biology, could help scientists improve agricultural productivity in saline soils, which occur across the globe and reduce crop yields.

Salts build up in soils from natural causes, such as sea spray, or can be introduced as a consequence of irrigation and poor land management. Salinity has deleterious effects on plant health and limits crop yields,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Chuanlong Lin, Guoyin Shen
February 13, 2018

Washington, DC—Water makes up more than 70 percent of our planet's surface and up to 60 percent of our bodies.

Water is so common that we take it for granted. Yet water also has very strange properties compared to most other liquids. Its solid form is less dense than its liquid form, which is why ice floats; its peculiar heat capacity profile has a profound impact on ocean currents and climate; and it can remain liquid at extremely cold temperatures.

In addition to ordinary water and water vapor, or steam, there are at least 17 forms of water ice, and two proposed forms of super-cooled liquid water.

New work from Carnegie high-pressure geophysicists Chuanlong Lin,

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, European Southern Observatory
February 8, 2018

Pasadena, CA— A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date, according to new research led by Carnegie’s Johanna Teske. This new information provides evidence to help astronomers better understand the process by which such planets form.

The GJ 9827 star actually hosts a trio of planets, discovered by NASA’s exoplanet-hunting Kepler/K2 mission, and all three are slightly larger than Earth. This is the size that the Kepler mission determined to be most common in the galaxy with periods between a few and several-hundred-days.

Intriguingly, no planets of this size

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Venkata Bhadram
January 24, 2018

Washington, DC—A team of experimental and computational scientists led by Carnegie’s Tim Strobel and Venkata Bhadram have synthesized a long sought-after form of titanium nitride, Ti3N4, which has promising mechanical and optoelectronic properties.

Standard titanium nitride (TiN), with a one-to-one ratio of titanium and nitrogen, exhibits a crystal structure resembling that of table salt—sodium chloride, or NaCl.  It is a metal with abrasive properties and thus used for tool coatings and manufacturing of electrodes. Titanium nitride with a three-to-four ratio of titanium and nitrogen, called titanic nitride, has remained elusive, despite previous theoretical predictions of its

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Carnegie Origins
March 6, 2018

How and when did life originate on Earth? How many other Earth-like planets exist in our Solar System and universe?

From the beginnings of recorded history, humans have had a fascination with their origins and with questions such as these. As part of our ongoing Science & Society project, Carnegie Science is pleased to present a series of four discussion forums on origins-related questions, including: How did we get here, where are we going, are we alone and what does that mean for humanity?

The invitation-only events and subsequent video series will highlight the importance and process of discovery science—emphasizing both how scientists think about fundamental

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Peter van Keken
March 22, 2018

A little over 50 years ago, the theory of plate tectonics emerged to provide a unifying theory for the dynamic behavior of the solid Earth as expressed by earthquakes, volcanoes, mountain building, and continental drift. In this talk, Dr. van Keken will discuss how our thinking of plate tectonics has evolved; how natural hazards are connected to the slow convective motion of the Earth’s interior; and how plate tectonics influences the longterm evolution of the Earth.

Dr. Peter van Keken: Department of Terrestrial Magnetism, Carnegie Science

#TectonicPlanet

Carnegie Science, Carnegie Institution, Carnegie Institution for Science, Julia Clarke, University of Texas
March 29, 2018

How do we go beyond the bones to bring dinosaurs to life? Dr. Clarke will explain the new toolkits she uses to  study what dinosaurs might have sounded or looked like when they roamed the Earth.

Dr. Julia Clarke: Wilson Professor of Vertebrate Paleontology & HHMI Professor, Jackson School of Geosciences, The University of Texas at Austin

#DinosaurBones

April 9, 2018

What is the Universe made of? We can peer millions of years into the past in the night sky, yet we barely understand just 5 percent—the “regular” matter that we can see. In the standard cosmological model, a quarter of the remaining 95 percent is dark matter. Dr. Seidel will discuss her quest to understand dark matter, and her experiences bringing astronomy education to some of the most remote and under-served locations on Earth.

Dr. Marja K. Seidel: Postdoctoral Research Associate, Carnegie Observatories

#DarkMatter

The WGESP was charged with acting as a focal point for research on extrasolar planets and organizing IAU activities in the field, including reviewing techniques and maintaining a list of identified planets. The WGESP developed a Working List of extrasolar planet candidates, subject to revision. In most cases, the orbital inclination of these objects is not yet determined, which is why most should still be considered candidate planets. The WGESP ended its six years of existence in August 2006, with the decision of the IAU to create a new commission dedicated to extrasolar planets as a part of Division III of the IAU. The founding president of Commission 53 is Michael Mayor, in honor of

The Carnegie Irvine Galaxy Survey is obtaining high-quality optical and near-infrared images of several hundred of the brightest galaxies in the southern hemisphere sky, at Carnegie’s Las Campanas Observatory to investigate the structural properties of galaxies. For more see    http://cgs.obs.carnegiescience.edu/CGS/Home.html

Carnegie Academy for Science Education

Scientific literacy is now recognized to be crucial for our nation's progress in the 21st century.

The Carnegie Institution, a pre-eminent basic research organization, has fostered the development of scientific knowledge since the early 20th century. For many years, this meant the training of graduate students and postdoctoral fellows in the Institution's laboratories, located in Washington, DC and around the country.

In 1989, Maxine Singer, then president of Carnegie, founded First Light, a Saturday science school for children. This was the start of the Carnegie Academy for Science Education (CASE) whose goal is to encourage interest in science among school children and

Chris Field is a co-principal investigator of the Jasper Ridge Global Change Experiment at the Jasper Ridge Biological Preserve in northern California. The site, designed to exploit grasslands as models for understanding how ecosystems may respond to climate change, hosts a number of studies of the potential effects from elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and increased nitrogen deposition. The site houses experimental plots that replicate all possible combinations of the four treatments and additional sampling sites that control for the effects of project infrastructure. Studies focus on several integrated ecosystem responses to the

Carnegie Observatories Director John Mulchaey and Carnegie Embryology Director Yixian Zheng serve jointly as interim Co-Presidents of Carnegie following the retirement of Matthew Scott. During this period, Mulchaey and Zheng will continue in their directorship roles at their respective departments.

John Mulchaey investigates groups and clusters of galaxies, elliptical galaxies, dark matter—the invisible material that makes up most of the universe—active galaxies and black holes. He is also actively involved in public outreach and education.

Most galaxies including our own Milky Way exist in collections known as groups, which are the most common galaxy systems and are

Allan Spradling is a Howard Hughes Medical Institute Investigator and director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues. Spradling uses the fruit fly Drosophila because the genes and processes studied are likely to be similar to those in other organisms including humans. In the 1980s he and his colleague, Gerald Rubin, showed how jumping genes could be used to identify and manipulate fruit fly genes. Their innovative technique helped establish Drosophila as

Director Emeritus, George Preston has been deciphering the chemical evolution of stars in our Milky Way for a quarter of a century. He and Steve Shectman started this quest using a special technique to conduct a needle-in-the-haystack search for the few, first-generation stars, whose chemical compositions sketch the history of element formation in the galaxy. These earliest stars are very rare and they are characteristically low in heavy metals because of their age. They were made of Big Bang material, mostly hydrogen and helium. It was only later that heavier elements were formed in the nuclear furnaces of newer stars.

 In their first study, Preston and Shectman compiled a list

The earliest galaxies are those that are most distant. Staff associate Dan Kelson is interested in how these ancient relics evolved. The latest generation of telescopes and advanced spectrographs—instruments that analyze light to determine properties of celestial objects—allow astronomers to accurately measure enormous numbers of distant galaxies. Kelson uses the Magellan 6.5-meter telescopes and high-resolution imaging from the Hubble Space Telescope to study distant galaxies.His observations of their masses, sizes and morphologies allow him to directly measure their stars' aging to infer their formation history. Kelson is the principal investigator of the Carnegie-Spitzer-IMACS