Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Grassland with forest on the horizon
    Breaking News
    October 24, 2025

    Prolonged, extreme drought in grassland and shrubland risks Dust Bowl conditions

    "Macromolecular Metabiology," used for frontispiece of CIW publication 624, "Studies of Macromolecular Biosynthesis"
    Breaking News
    October 17, 2025

    From Atoms to Cells: A History of the Biophysics Section

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The origin, evolution, and cycling of volatiles on the Moon are established by processes such as the giant moon forming impact, degassing of the lunar magma ocean, degassing during surface eruptions, and lunar surface gardening events. These processes typically induce mass-dependent stable isotope fractionations. Mass-independent fractionation of stable isotopes has yet to be demonstrated during events that release large volumes of gas on the moon and establish transient lunar atmospheres. We present quadruple sulfur isotope compositions of orange and black glass beads from drive tube 74002/1. The sulfur isotope and concentration data collected on the orange and black glasses confirm a role for magmatic sulfur loss during eruption. The Delta S-33 value of the orange glasses is homogenous (Delta S-33 = -0.029 parts per thousand +/- 0.004 parts per thousand, 2SE) and different from the isotopic composition of lunar basalts (Delta S-33 = 0.002 parts per thousand +/- 0.004 parts per thousand, 2SE). We link the negative Delta S-33 composition of the orange glasses to an anomalous sulfur source in the lunar mantle. The nature of this anomalous sulfur source remains unknown and is either linked to (a) an impactor that delivered anomalous sulfur after late accretion, (b) sulfur that was photochemically processed early during lunar evolution and was transported to the lunar mantle, or (c) a primitive sulfur component that survived mantle mixing. The examined black glass preserves a mass-dependent Delta S-33 composition (-0.008 parts per thousand +/- 0.006 parts per thousand, 2SE). The orange and black glasses are considered genetically related, but the discrepancy in Delta S-33 composition among the two samples calls their relationship into question.
View Full Publication open_in_new
Shutterstock image of relief tents from 2022 Pakistan flooding
October 25, 2023

Analysis of 2022 Pakistan floods identifies recovery strategies

Abstract
Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.
View Full Publication open_in_new
Abstract
We present the JWST Resolved Stellar Populations Early Release Science (ERS) program. We obtained 27.5 hr of NIRCam and NIRISS imaging of three targets in the Local Group (Milky Way globular cluster M92, ultrafaint dwarf galaxy Draco II, and star-forming dwarf galaxy WLM), which span factors of similar to 10(5) in luminosity, similar to 10(4) in distance, and similar to 10(5) in surface brightness. We describe the survey strategy, scientific and technical goals, implementation details, present select NIRCam color-magnitude diagrams (CMDs), and validate the NIRCam exposure time calculator (ETC). Our CMDs are among the deepest in existence for each class of target. They touch the theoretical hydrogen-burning limit in M92 (<0.08 M-circle dot; M-F090W similar to +13.6), include the lowest-mass stars observed outside the Milky Way in Draco II (0.09 M-circle dot; M-F090W similar to +12.1), and reach similar to 1.5 mag below the oldest main-sequence turnoff in WLM (M-F090W similar to +4.6). The PARSEC stellar models provide a good qualitative match to the NIRCam CMDs, though they are similar to 0.05 mag too blue compared to M92 F090W - F150W data. Our CMDs show detector-dependent color offsets ranging from similar to 0.02 mag in F090W - F150W to similar to 0.1 mag in F277W - F444W; these appear to be due to differences in the zero-point calibrations among the detectors. The NIRCam ETC (v2.0) matches the signal-to-noise ratios based on photon noise in uncrowded fields, but the ETC may not be accurate in more crowded fields, similar to what is known for the Hubble Space Telescope. We release the point-source photometry package DOLPHOT, optimized for NIRCam and NIRISS, for the community.
View Full Publication open_in_new
Abstract
The chemical interaction of Sn with H-2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below T-C = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2, and C2-Sn12H18, is also detected. The temperature dependence of critical current density C-J(T) in SnH4 yields the superconducting gap 2 Delta(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field B-C2(T) proportional to(T-C - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Gruneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.
View Full Publication open_in_new
Abstract
Physical laws-such as the laws of motion, gravity, electromagnetism, and thermodynamics-codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena-for example, falling apples and orbiting moons or hot objects and compressed springs-has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection-static persistence, dynamic persistence, and novelty generation-that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a "law of increasing functional information": The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.
View Full Publication open_in_new
Abstract
This paper reports the first measurement of the relationship between turbulent velocity and cloud size in the diffuse circumgalactic medium (CGM) in typical galaxy halos at redshift z approximate to 0.4-1. Through spectrally resolved absorption profiles of a suite of ionic transitions paired with careful ionization analyses of individual components, cool clumps of size as small as l(cl) similar to 1 pc and density lower than n(H) =10(-3) cm(-3) are identified in galaxy halos. In addition, comparing the line widths between different elements for kinematically matched components provides robust empirical constraints on the thermal temperature T and the nonthermal motions b(NT), independent of the ionization models. On average, b(NT) is found to increase with lcl following bNT mu l(cl)(0.3)over three decades in spatial scale from l(cl) approximate to 1 pc to l(cl) approximate to 1 kpc. Attributing the observed b(NT) to turbulent motions internal to the clumps, the best-fit b(NT)-l(cl) relation shows that the turbulence is consistent with Kolmogorov at <1 kpc with a roughly constant energy transfer rate per unit mass of epsilon approximate to 0.003 cm(2) s(-3) and a dissipation timescale of less than or similar to 100 Myr. No significant difference is found between massive quiescent and star-forming halos in the sample on scales less than 1 kpc. While the inferred epsilon is comparable to what is found in C IV absorbers at high redshift, it is considerably smaller than observed in star-forming gas or in extended line-emitting nebulae around distant quasars. A brief discussion of possible sources to drive the observed turbulence in the cool CGM is presented.
View Full Publication open_in_new
Profile picture of Sachithra Weerasooriya

Sachi Weerasooriya

Postdoctoral Fellow

Pagination

  • Previous page chevron_left
  • …
  • Page 170
  • Page 171
  • Page 172
  • Page 173
  • Current page 174
  • Page 175
  • Page 176
  • Page 177
  • Page 178
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025