Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Carnegie Science's Broad Branch Road campus in the fall with brilliant leaves
    Public Program

    Inaugural Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Pressure-induced amorphization (PIA) in singlecrystal Ta2O5 nanowires is observed at 19 GPa, and the obtained amorphous Ta2O5 nanowires show significant improvement in electrical conductivity. The phase transition process is unveiled by monitoring structural evolution with in situ synchrotron X-ray diffraction, pair distribution function, Raman spectroscopy, and transmission electron microscopy. The first principles calculations reveal the phonon modes softening during compression at particular bonds, and the analysis on the electron localization function also shows bond strength weakening at the same positions. On the basis of the experimental and theoretical results, a kinetic PIA mechanism is proposed and demonstrated systematically that amorphization is initiated by the disruption of connectivity between polyhedra (Ta2O6 octahedra or Ta2O7 bipyramids) at the particular weak-bonding positions along the a axis in the unit cell. The one-dimensional morphology is well-preserved for the pressure-induced amorphous Ta2O5, and the electrical conductivity is improved by an order of magnitude compared to traditional amorphous forms. Such pressure-induced amorphous nanomaterials with unique properties surpassing those in either crystalline or conventional amorphous phases hold great promise for numerous applications in the future.
View Full Publication open_in_new
Abstract
During the cycling of Li-O-2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O-2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O-2 battery.
View Full Publication open_in_new
Abstract
Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp(3)-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp(3) bonds, purely sp(3)-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into "quenchable amorphous diamond", and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on the recovered sample and computer simulations confirm its tetrahedral amorphous structure and complete sp(3) bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.
View Full Publication open_in_new
Abstract
The direct and diffuse components of downward shortwave radiation (SW), and photosynthetically active radiation (PAR) at the Earth surface play an essential role in biochemical (e.g. photosynthesis) and physical (e.g. energy balance) processes that control weather and climate conditions, and many ecological processes. Space based observations have the unique advantage of providing reliable estimates of SW and PAR globally with sufficient accuracy for constructing Earth's radiation budget and estimating land-surface fluxes that control these processes. However, most existing space-based SW and PAR estimations from sensors onboard polar-orbiting and geostationary satellites have inherently low temporal resolution and/or limited spatial coverage of the entire Earth surface. The unique location/orbit of Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) provides an unprecedented opportunity to obtain global estimates of SW and PAR accurately at a high temporal resolution of about 1-2 h. In this study, we developed and used a model (random forest, RF) to estimate global hourly SW and PAR at 0.1 degrees x 0.1 degrees (about 10 km at equator) spatial resolution based on EPIC measurements. We used a combination of EPIC Level-2 products, including solar zenith angle, aerosol optical depth, cloud optical thickness, cloud fraction, total column ozone and surface pressure with their associated quality flags to drive the RF model for estimating SW and PAR. We evaluated the model results against in situ observations from the Baseline Surface Radiation Network (BSRN) and Surface Radiation Budget Network (SURFRAD). We found the EPIC SW and PAR estimates at both hourly and daily time scales to be highly correlated and consistent with these independently obtained in situ measurements. The RMSEs for estimated daily diffuse SW, direct SW, total SW, and total PAR were 19.10, 38.47, 33.52, and 14.09 W/m(2), respectively, and the biases for these estimates were 1.71, -0.77, 1.04 and 4.11 W/m(2), respectively. We further compared the estimated SW and PAR with the Clouds and the Earth's Radiant Energy System Synoptic 1 degrees x 1 degrees (CERES SYN1deg) products and found a good correlation and consistency in their accuracy, spatial patterns and latitudinal gradient. The EPIC SW and PAR estimates provide a unique dataset (i.e. observations from single instrument from pole-to-pole for the entire sunlit portion of Earth) for characterizing their diurnal cycles and their potential impact on photosynthesis and evapotranspiration processes.
View Full Publication open_in_new
Abstract
Following the disruption of Russian natural gas flows to Europe, we investigate the impact of collaborative and selfish behavior of European countries to tackle energy scarcity and supply electricity, heat, and industrial gas to end users. We study how the operation of the European energy system will need to adapt to the disruption and identify optimal strategies to overcome the unavailability of Russian gas. Those strategies include diversifying gas imports, shifting energy generation to non-gas-based technologies, and reducing energy demands. Find-ings suggest that: (1) selfish behavior of Central European countries exacerbates the energy scarcity for many Southeastern European countries; (2) proactive collaborative energy savings, together with a mild winter, can fully relieve the stress of the gas shortage; (3) diversification of gas imports leads to bottlenecks in the gas network, especially in Southeastern Europe; and (4) electricity genera-tion is mostly shifted to coal-based power plants, causing higher carbon emissions.
View Full Publication open_in_new
Abstract
Multi-energy systems can improve the performance of traditional energy systems, where energy carriers and sectors are decoupled, in terms of economic, environmental, and social sustainability, measured as the total cost of energy, emissions per energy demand, and self-sufficiency, respectively. This study assesses the impact that policy mechanisms can have in enabling these sustainability benefits. A mixed-integer linear problem is implemented, which optimizes the design and operation of multi-energy systems to minimize the total annual cost of supplying energy to residential end-users. Four policy types are tested for a Swiss case study, namely a feed-in tariff, an investment support mechanism, a carbon tax, and a regulation-based carbon cap. To assess how the policy impact varies between different end-users, we distinguish between passive consumers, that cannot access subsidies, and prosumers, who can. In our case study, subsidies, such as a feed-in tariff and an investment support mechanism, decrease the cost of energy for prosumers by up to 10%, but increase the cost for consumers by up to 33%, which points to the need of including energy equity considerations when designing policies. The carbon cap and the carbon tax impact all end-users equally, and tend to perform better in terms of reducing emissions. Emission reductions of up to 60% and 39% are observed for the carbon cap and carbon tax, respectively. The feed-in tariff and carbon cap perform best in fostering self-sufficiency and achieve balanced energy autonomy for high policy levels, revealing a trade-off between the different sustainability dimensions.
View Full Publication open_in_new
Abstract
Designing decentralized energy systems in an optimal way can substantially reduce costs and environmental burdens. However, most models for the optimal design of multi-energy systems (MESs) exclude a comprehensive environmental assessment and consider limited technology options for relevant energy-intensive sectors, such as the industrial and mobility sectors. This paper presents a multi-objective optimization framework for designing MESs, which includes life cycle environmental burdens and considers a wide portfolio of technology options for residential, mobility, and industrial sectors. The optimization problem is formulated as a mixed integer linear program that minimizes costs and greenhouse gas (GHG) emissions while meeting the energy demands of given end-users. Whereas our MESs optimization framework can be applied for a large range of boundary conditions, the geographical island Eigeroy (Norway) is used as a showcase as it includes substantial industrial activities. Results demonstrate that, when properly designed, MESs are already cost-competitive with incumbent energy systems, and significant reductions in the amount of natural gas (92%) and GHG emissions (73%) can be obtained with a marginal cost increase (18%). Stricter decarbonization targets incur larger costs. A broad portfolio of technologies is deployed when minimizing GHG emissions and integrating the industrial sector. Environmental trade-offs are identified when considering the construction phase of energy technologies. Therefore, we argue that (i) MES designs and assessments require a thorough life cycle assessment beyond GHG emissions, and (ii) the entire life cycle should be considered when designing MESs, with the construction phase contributing up to 80% of specific environmental impact categories.
View Full Publication open_in_new
Donald Brown seated in the lab in Baltimore. Black and white photo.
September 27, 2023
Feature Story

Carnegie Science community memorializes Don Brown

Mirror lab staff member places the last piece of glass into the mold for the fifth Giant Magellan Telescope mirror
September 26, 2023

Giant Magellan Telescope begins fabricating seventh and final primary mirror

September 25, 2023

With help of A.I. we may soon know if life existed on Mars

Pagination

  • Previous page chevron_left
  • …
  • Page 175
  • Page 176
  • Page 177
  • Page 178
  • Current page 179
  • Page 180
  • Page 181
  • Page 182
  • Page 183
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025