Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Light and brassinosteroid (BR) antagonistically regulate the developmental switch from etiolation in the dark to photomorphogenesis in the light in plants. Here, we identify GATA2 as a key transcriptional regulator that mediates the crosstalk between BR- and light-signaling pathways. Overexpression of GATA2 causes constitutive photomorphogenesis in the dark, whereas suppression of GATA2 reduces photomorphogenesis caused by light, BR deficiency, or the constitutive photomorphogenesis mutant cop1. Genome profiling and chromatin immunoprecipitation experiments show that GATA2 directly regulates genes that respond to both light and BR. BR represses GATA2 transcription through the BR-activated transcription factor BZR1, whereas light causes accumulation of GATA2 protein and feedback inhibition of GATA2 transcription. Dark-induced proteasomal degradation of GATA2 is dependent on the COP1 E3 ubiquitin ligase, and COP1 can ubiquitinate GATA2 in vitro. This study illustrates a molecular framework for antagonistic regulation of gene expression and seedling photomorphogenesis by BR and light.
View Full Publication open_in_new
Abstract
The search for new candidate semiconductors with direct band gaps of similar to 1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 < x < 1) compounds in particular focus on the four stoichiometric Bx/2Nx/2C1-x (x = 2/3, 1/2, 2/5 and 1/3) using a recently developed global optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer Bx/2Nx/2C1-x stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of Bx/2Nx/2C1-x phases possess direct band gaps within the optical range, thereby they can potentially be used in high-efficiency conversion of solar energy to electric power, as well as in p-n junction photovoltaic modules. The present results also show that the band gaps of Bx/2Nx/2C1-x can be widely tuned within the optical range by changing the concentration of carbon, thus allowing the fast development of band gap engineered materials in optoelectronics. These new findings may enable new approaches to the design of microelectronic devices.
View Full Publication open_in_new
Abstract
A new allotrope of nitrogen in which the atoms are connected to form a novel N-6 molecule is predicted to exist at ambient conditions. The N-6 molecule is a charge-transfer complex with an open-chain structure containing both single and triple bonds. The charge transfer induces ionic characteristics in the intermolecular interactions and leads to a much higher cohesive energy for the predicted crystal compared to solid N-2. The N-6 solid is also more stable than a previously reported polymeric solid of nitrogen. Because of the kinetic stability of the molecules and strong intermolecular interactions, the N-6 crystal is shown by metadynamics simulations to be dynamically stable around room temperature and to only dissociate to N-2 molecules above 700 K. The N-6 crystal can likely be synthesized under high-pressure high-temperature conditions, and the considerable metastability may allow for an ambient pressure recovery of the crystal. Because of the large energy difference between the single and triple bonds, the dissociation of the N-6 crystal is expected to release a large amount of energy, placing it among the most efficient energy materials known today.
View Full Publication open_in_new
Abstract
Using global structure searches, We have explored the structural, stability of CaB3N3, a compound analogous to CaC6, under pressure. There are two high-pressure phases with space groups R3c and Amm2 that were found to be stable between 29 and 42 GPa, and above 42 GPa, respectively. The two phases show different structural frameworks, analogous to graphitic CaC6. Phonon calculations confirm that both structures are also dynamically stable at high pressures. The electronic Structure calculations show that the R3c phase is a semiconductor With a band gap of 2.21 eV and that the Amm2 phase is a semimetal. These findings help advance our understanding of the Ca-B-N ternary system.
View Full Publication open_in_new
Abstract
Recent hydrodynamic simulations and observations of radio jets have shown that the surrounding environment has a large effect on their resulting morphology. To investigate this, we use a sample of 50 Extended Radio Active Galactic Nuclei (ERAGN) detected in the Observations of Redshift Evolution in Large-Scale Environments survey. These sources are all successfully cross-identified to galaxies within a redshift range of 0.55 <= z <= 1.35, either through spectroscopic redshifts or accurate photometric redshifts. We find that ERAGN are more compact in high-density environments than those in low-density environments at a significance level of 4.5 sigma. Among a series of internal properties under our scrutiny, only the radio power demonstrates a positive correlation with their spatial extent. After removing the possible radio power effect, the difference of size in low- and high-density environments persists. In the global environment analyses, the majority (86%) of high-density ERAGN reside in the cluster/group environment. In addition, ERAGN in the cluster/group central regions are preferentially compact with a small scatter in size, compared to those in the cluster/group intermediate regions and fields. In conclusion, our data appear to support the interpretation that the dense intracluster gas in the central regions of galaxy clusters plays a major role in confining the spatial extent of radio jets.
View Full Publication open_in_new
Abstract
Solar-induced chlorophyll fluorescence (SIF) shows enormous promise as a proxy for photosynthesis and as a tool for modeling variability in gross primary productivity and net biosphere exchange (NBE). In this study, we explore the skill of SIF and other vegetation indicators in predicting variability in global atmospheric CO2 observations, and thus global variability in NBE. We do so using a 4-year record of CO2 observations from NASA's Orbiting Carbon Observatory 2 satellite and using a geostatistical inverse model. We find that existing SIF products closely correlate with space-time variability in atmospheric CO2 observations, particularly in the extratropics. In the extratropics, all SIF products exhibit greater skill in explaining variability in atmospheric CO2 observations compared to an ensemble of process-based CO2 flux models and other vegetation indicators. With that said, other vegetation indicators, when multiplied by photosynthetically active radiation, yield similar results as SIF and may therefore be an effective structural SIF proxy at regional to global spatial scales. Furthermore, we find that using SIF as a predictor variable in the geostatistical inverse model shifts the seasonal cycle of estimated NBE and yields an earlier end to the growing season relative to other vegetation indicators. These results highlight how SIF can help constrain global-scale variability in NBE.
View Full Publication open_in_new
Abstract
Defining the age of the Moon has proven to be an elusive task because it requires reliably dating lunar samples using radiometric isotopic systems that record fractionation of parent and daughter elements during events that are petrologically associated with planet formation. Crystallization of the magma ocean is the only event that unambiguously meets this criterion because it probably occurred within tens of millions of years of Moon formation. There are three dateable crystallization products of the magma ocean: mafic mantle cumulates, felsic crustal cumulates, and latestage crystallization products known as urKREEP (uniform residuum K, rare earth elements, and P). Although ages for these materials in the literature span 200 million years, there is a preponderance of reliable ages around 4.35 billion years recorded in all three lunar rock types. This age is also observed in many secondary crustal rocks, indicating that they were produced contemporaneously (within uncertainty of the ages), possibly during crystallization and overturn of the magma ocean.
View Full Publication open_in_new
Abstract
The nature of Earth's first crust and the processes that formed it are poorly constrained due to limited exposures of >3.7 billion-year-old (Ga) rocks. Here we report the discovery of a new Eoarchean terrane named the Muzidian gneiss complex in the Yangtze craton of central China where rocks as old as 3.81 Ga are preserved. In this study, we characterized six samples (including five TTGs and an amphibolite) through zircon U-Pb age, Hf isotope and bulk-rock 146,147Sm-142,143Nd isotope compositions. The subchondritic zircon initial Hf isotope compositions and the negative mu 142Nd values for the 3.81 - 3.65 Ga samples reveal that these rocks were most likely reworked from >4.3 Ga mafic crust. The 2.5 - 2.4 Ga rocks in the same complex are the youngest felsic rocks on Earth with deficits in 142Nd, highlighting the long-lived role of Hadean crustal components in the building of a stable continent. The 147Sm-143Nd isotopic systematics of these rocks are disturbed. The currently available data for global Eoarchean rocks suggest two distinct lineages for > 3.6 Ga Eoarchean crustal blocks, one produced by reworking of Hadean mafic crust with the isotopic signature of coupled negative epsilon Hf(t) and mu 142Nd, and the other by melting of incompatible-element-depleted mantle sources residual to Hadean crust formation characterized by positive mu 142Nd and near chondritic epsilon Hf(t). The Eoarchean samples of the Muzidian gneiss complex in the present study, along with >3.6 Ga rocks in the Acasta, Napier and Nuvvuagittuq regions imply a Hadean crustal source distinct from the products expected for magma ocean crystallization.(c) 2023 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
The Tuli Basin represents one of the larger erosional remnants of the rift-related sequences of the Karoo continental flood basalts (CFB) of southern Africa. We present previously unpublished bulk-rock major and trace element analyses for 787 high-Ti picrites and basalts, including both surface and drill core samples, as well as SrNd-Hf-Pb-Os isotope compositions and rare earth element (REE) abundances for selected samples. Due to the identification of previously unrecognised basaltic sub-types, a new classification scheme for the high-Ti basalts and picrites of the Tuli Basin is proposed where they are divided into three types based on Zr/Nb and Ce/Y ratios: HZN-1, HZN-2, and LZN. The HZN-1 picrites/basalts occur at the base of the lava sequence and are overlain by the HZN-2 basalts, which, in turn, are overlain by the LZN basalts. We show that crustal assimilation is not the dominant process in influencing basalt and picrite petrogenesis. Using the Magma Chamber Simulator (MCS) program, the HZN-1 basalts are shown to have evolved over a range of pressure, whereas the HZN-2 and LZN basalts evolved at shallow depths. The HZN-1 and LZN picrites are highly enriched in LILE, HFSE, and LREE and are characterised by variable Zr/Y with high values at the base of the lava sequence that gradually decrease upward. This upwards decrease is shown to be related to increasing degrees of partial melting in the source with time. Compared to the picrites, the basalts have relatively low Zr/Y, indicating that evolution of basalt from a picritic parent began only after achieving higher degrees of partial melting in the source. The HZN-1 picrites and basalts have relatively radiogenic 87Sr/86Sri (0.7048 to 0.7059), low ENdi (-7.2 to -9.8), low EHfi (-8.9 to -14.2), and variable gamma Osi (-14.0 to +10.8), and are clearly distinguishable from HZN-2 and LZN basalts that have less radiogenic (87Sr/86Sr)i (-0.7045), higher ENdi (-1.2 to -4.5), EHfi (-0.1), and gamma Osi (-1.6 and +3.9). We show that the mantle source of southern African Karoo high-Ti basalts comprises at least three components with a dominant sub-continental lithospheric mantle (SCLM) signature. Each basalt type is shown to represent a temporally distinct episode of mantle melting and each of the three mantle components are progressively exhausted in the source with time. The possible presence of a sub-lithospheric component is only significantly reflected in the composition of the LZN basalts and picrites; the final phase of eruption.
View Full Publication open_in_new
Abstract
Temporal variations in lava chemistry at active submarine volcanoes are difficult to decipher due to the challenges of dating their eruptions. Here, we use high-precision measurements of 226Ra-230Th disequilibria in basalts from Kama`ehuakanaloa (formerly LiVihi) to estimate model ages for recent eruptions of this submarine Hawaiian pre-shield volcano. The ages range from ca. 0 to 2300 yr (excluding two much older samples) with at least five eruptions in the past similar to 150 yr. Two snapshots of the magmatic evolution of Kama`ehuakanaloa (or "Kama`ehu") are revealed. First, a long-term transition from alkalic to tholeiitic volcanism was nearly complete by ca. 2 ka. Second, a systematic short-term fluctuation in ratios of incompatible elements (e.g., Th/Yb) for summit lavas occurred on a time scale of similar to 1200 yr. This is much longer than the similar to 200-yr-long historical cycle in lava chemistry at the neighboring subaerial volcano, Kilauea. The slower pace of the variation in lava chemistry at Kama`ehu is most likely controlled by sluggish mantle upwelling on the margin of the Hawaiian plume.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • Current page 94
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025