Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Serpentinite: clasts and muds erupted from Conical Seamount, Mariana forearc, show substantial enrichment in boron (B) and B-11 (delta B-11 up to +15 parts per thousand) relative to mantle values. These elevated B isotope signatures result from chemical exchange with B-rich pore fluids that are upwelling through the seamount. If the trends of decreasing delta B-11 with slab depth shown by cross-are magmatic suites in the Izu and Kurile arcs of the western Pacific are extended to shallow depths (similar to 25 km), they intersect the inferred delta B-11 of the slab-derived fluids (+13 parts per thousand) at Conical Seamount. Simple mixtures of a B-rich fluid with a high delta B-11 and B-poor mantle with a low delta B-11 are insufficient to explain the combined forearc and are data sets. The B isotope systematics of subduction-related rocks thus indicate that the fluids evolved from downgoing slabs are more enriched in B-11 than the slab materials from which they originate. Progressively lower delta B-11 in are lavas erupted above deep slabs reflects both the progressive depletion of B-11 from the slab and progressively greater inputs of mantle-derived B. This suggests that the slab releases B-11-enriched fluids from the shallowest levels to depths greater than 200 km. (C) 2001 Elsevier Science B.V. All rights reserved.
View Full Publication open_in_new
Abstract
A method for determining the initial Pb of a terrain, on the basis of the measured isotopic compositions of its rocks, is put forward in this report. The method was inspired by the premise that the initial Pb inherited by the rocks from a reservoir from which they were extracted, is immutable and inerasable, irrespective ofthe multitude of disturbances that may have subsequently been superimposed on the terrain. This is because while these disturbances may have altered the isotopic composition of some or all the rocks, they lacked the vehemence to re-melt the entire terrain or at least a very large portion of it, which is a pre-requisite for altering the isotopic composition of initial Pb. If this rational is valid, then a large Pb isotope database (including data on mineral separates with low affinities for U and Th) that is representative of a terrain, when plotted on any Pb isotope correlation diagram (e.g., the conventional Pb/Pb plot), may define a dispersion field that tapers toward a single spot. That single spot (once unambiguously determined) is the initial Pb isotopic composition.
View Full Publication open_in_new
Abstract
The recently developed TULIP methodology for determining Initial lead, based on the measured Pb isotopic compositions of rocks, was applied to four terrestrial terrains, and the results are shown and discussed in this report. Particular emphasis was given to the determination of initial Pb of the South Of Isua (SOI) terrain, because of the availability of a large high-quality database on its rocks and feldspar separates. The initial Pb results for SOI, are: Pb-206/Pb-204 = 11.088 +/- 0.024, Pb-207/Pb-204 = 12.983 +/- 0.002, and Pb-208/Pb-204 = 31.196 +/- 0.014. Initial Pb was also precisely determined for the Beartooth Mountains, and the results are: 206/204 = 13.571 +/- 0.071, 207/204 = 14.891 +/- 0.003, and 208/204 = 32.41 +/- 0.08. These results demonstrate the feasibility of routine determination of initial Pb by the developed methodology, once large databases for the terrains are established. Extending the methodology to terrains of other planets should be possible.
View Full Publication open_in_new
Abstract
Results of multiple sulfur isotope analyses from five Archean paleosols show the widespread presence of mass-independently fractionated sulfur in the regolith developed on the pre-2.5 Ga Earth. Analysis of sulfur from a small set of diamictite samples gave similar results. All values of Delta S-33 are negative, indicating that the Archean surface environments preferentially retained atmospheric S from the SO42- pathway, which carried a negative Delta S-33 signal, whereas a portion of the S from the S-8 pathway, with a positive Delta S-33, was transferred to the oceans. The soil SO42- was then converted to sulfide by bacterial sulfate reduction with terrestrial organic matter in the weathering horizon acting as a reductant. Some S from the S-8 pathway also included, which resulted in a net soil Delta S-33 anomaly from atmospheric S in the range-0.3 to-0.6%, similar to values for pyrites from floodplain sediments. Excess S-8-derived S was carried to the oceans, resulting in the negative/positive dichotomy between terrestrial and marine systems. Pyrite that formed in paleosols and pyrite grains that formed in flood-plain deposits, both carrying the terrestrial Delta S-33 signal, were then recycled into detrital pyrite grains nowfound in sand-stones and conglomerates deposited before the rise of atmospheric oxygen. Therefore the Earth's early regolith constituted a reservoir of S with negative Delta S-33 values that could be important for balancing the predominantly positive Delta S-33 signature found in marine sediments. (C) 2013 Elsevier B. V. All rights reserved.
View Full Publication open_in_new
Abstract
Trojan and Shangani mines are low-grade (< 0.8 % Ni), komatiite-hosted nickel sulfide deposits associated with ca. 2.7 Ga volcano-sedimentary sequences of the Zimbabwe craton. At both mines, nickel sulfide mineralization is present in strongly deformed serpentinite bodies that are enveloped by a complex network of highly sheared, silicified, and sulfide-bearing metasedimentary rocks. Strong, polyphase structural-metamorphic-metasomatic overprints in both the Trojan and Shangani deposits make it difficult to ascertain if sulfide mineralization was derived from orthomagmatic or hydrothermal processes, or by a combination of both. Multiple S, Fe, and Ni isotope analyses were applied to test these competing models. Massive ores at Shangani Mine show mass-dependent fractionation of sulfur isotopes consistent with a mantle sulfur source, whereas S-isotope systematics of net-textured ore and disseminated ore in talcose serpentinite indicates mixing of magmatic and sedimentary sulfur sources, potentially via post-magmatic hydrothermal processes. A restricted range of strongly mass-independent Delta S-33 values in ore samples from Trojan Mine likely reflects high-temperature assimilation of sulfur from supracrustal rocks and later superimposed low-temperature hydrothermal remobilization. Iron isotope values for most Ni-bearing sulfides show a narrow range suggesting that, in contrast to sulfur, nearly all of iron was derived from an igneous source. Negative Ni isotope values also agree with derivation of Ni from ultramafic melt and a significant high-temperature fractionation of Ni isotopes. Fe isotope values of some samples from Shangani Mine are more fractionated than expected to occur in high-temperature magmatic systems, further suggesting that hydrothermal processes were involved in either low-grade ore formation (liberation of Ni from olivine by sulfur-bearing hydrothermal fluids) or remobilization of existing sulfides potentially inducing secondary Ni-sulfide mineralization.
View Full Publication open_in_new
Abstract
Graphitic carbon, with its diverse structures and unique properties, is everywhere at Earth's surface. Strategically located at the interface between the lithosphere, biosphere, hydrosphere, and atmosphere, graphitic carbon constitutes a major terrestrial carbon reservoir. Natural and synthetic graphitic carbon is also used in a broad range of applications, and graphitic carbon, so widely varied in its physical properties, has proven to be adaptable to many uses in society. Graphitic carbon has played an important role in human history (for example, coal mining) and is now a building block of nanotechnology, but this remarkable material is also an active player in geological processes.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 88
  • Page 89
  • Page 90
  • Page 91
  • Current page 92
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025