Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We report measurements of the isotopic composition of lithium in basalts using a multicollector magnetic sector plasma-source mass spectrometer (MC-ICP-MS). This is the first application of this analytical technique to Li isotope determination. External precision of multiple replicate and duplicate measurements for a variety of sample types averages +/-1.1 parts per thousand (2 sigma population). The method allows for the rapid (similar to 8 min/sample) analysis of small samples (similar to 40 ng Li) relative to commonly used thermal ionization methods. The technique has been applied to a suite of samples from Kilauea Iki lava lake, Hawaii. The samples range from olivine-rich cumulitic lava to SiO2- and K2O-enriched differentiated liquids, and have delta(7)Li (per mil deviation of sample Li-7/Li-6 relative to the L-SVEC standard) of +3.0 to +4.8. The data indicate a lack of per mil-level Li isotope fractionation as a result of crystal-liquid fractionation at temperatures greater than 1050 degrees C, This conclusion has been tacitly assumed but never demonstrated, and is important to the interpretation of Li isotope results from such geochemically complex environments as island arcs. Copyright (C) 1999 Elsevier Science Ltd.
View Full Publication open_in_new
Abstract
An evaluation of early solar system chronometry by the Pb-Pb and U-Pb methods is provided. Specifically, three consequential factors are examined: procedure of age calculation, extent of terrestrial Pb contamination, and initial Pb isotopic composition. On a Pb-Pb diagram, high temperature inclusions of the Allende meteorite are tightly organized into a well-defined line (inside a potentially dispersive mixing field), which is consistent with the inclusions containing initial Pb that is more primitive than that of Canon Diablo troilite (PAT). Consequences of the possible existence of a pre-PAT Pb to the evolution history of the solar nebula are discussed.
View Full Publication open_in_new
Abstract
Trace element concentrations and B isotope compositions were determined for lavas from the Eastern Volcanic Front (EVF), the Central Kamchatka Depression (CKD), and the Sredinny Range (SR) in the Kamchatka are. Trace element ratios and delta B-11 values of the EVF lavas show across-arc variations that are consistent with those observed in the adjacent Kurile are: B/Nb, Pb/Nb, and delta B-11 are highest at the volcanic front (14 to 22, 2.0 to 2.4, and +4.9 to +5.6 parts per thousand, respectively) and systematically decrease with increasing slab depth (to similar to3, similar to0.9, and similar to2 parts per thousand, respectively) whereas Rb/Nb, Ba/Nb, K/Nb, Be/Nb, and Li/Zr do not vary significantly across the are. The values for the SR (B/Nb = 1.7 to 2.0, Pb/Nb = 0.9 to 1.2, and delta B-11 = -3.7 to -1.1 parts per thousand) located far behind the EVF are consistent with these across-are trends. However, the CKD lavas exhibit elevated B/Nb (6 to 13) and delta B-11 values (-0.6 to +3.6 parts per thousand) although the slab depths are greater than at the EVF, Despite variations in B/Nb and delta B-11, the values for all these three volcanic zones of Kamchatka can be explained in terms of simple mixing between a depleted mantle wedge and slab-derived aqueous fluids with a relatively homogeneous delta B-11 (+6.2 +/- 0.5 parts per thousand). This mixing trend resembles those observed in Kurile, Izu, and Mariana, suggesting that fluids derived from altered oceanic crust and/or serpentinized peridotite in the subducting slab predominate in the slab-mantle interaction beneath these western Pacific arcs. Given this mixing relationship, the high B/Nb and delta B-11 values observed in the CKD indicate particularly large fluid influx beneath this region, which may partly result from subduction of the altered crust of the Emperor seamount chain in addition to the altered Mid-Ocean Ridge Basalt (MORB) crust. The compositions of the SR lavas in this study are consistent with melting of a weakly fluid-metasomatized mantle. However, the origin of magma in this volcanic zone is complicated, judging from the variable chemical characteristics reported for the SR lavas, Copyright (C) 2001 Elsevier Science Ltd.
View Full Publication open_in_new
Abstract
Complementary, double- and single-resonance solid-state (H-1 and C-13) nuclear magnetic resonance (NMR) experiments were performed on a solvent extracted and demineralized sample of Murchison meteorite organic macromolecule. These NMR data provide a consistent picture of a complex organic solid composed of a wide range of organic (aromatic and aliphatic) functional groups, including numerous oxygen-containing functional groups. The fraction of aromatic carbon within the Murchison organic residue (constrained by three independent experiments) lies between 0.61 and 0.66. The close similarity in cross-polarized and single-pulse spectra suggests that both methods detect the same distribution of carbon. With the exception of interstellar diamond (readily detected in slow magic angle spinning single-pulse NMR experiments), there is no evidence in the solid-state NMR data for a significant abundance of large laterally condensed aromatic molecules in the Murchison organic insoluble residue. Given the most optimistic estimation, such carbon would not exceed 10%, and more likely is a fraction of this maximum estimate. The fraction of aromatic carbon directly bonded to hydrogen is low (similar to30%), indicating that the aromatic molecules in the Murchison organic residue are highly substituted. The bulk hydrogen content, H/C, derived from NMR data, ranges from a low of 0.53 +/- 0.06 and a high of 0.63 +/- 0.06. The hydrogen content (H/C) determined via elemental analysis is 0.53. The range of oxygen-containing organic functionality in the Murchison is substantial. Depending on whether various oxygen-containing organic functional groups exist as free acids and hydroxyls or are linked as esters and ethers results in a wide range in O/C (0.22 to 0.37). The lowest values are more consistent with elemental analyses, requiring that oxygen-containing functional groups in the Murchison macromolecule are highly linked. The combined H-1 and C-13 NMR data reveal a high proportion of methine carbon, which requires that carbon chains within the Murchison organic macromolecule are highly branched. Copyright (C) 2002 Elsevier Science Ltd.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 88
  • Page 89
  • Page 90
  • Page 91
  • Current page 92
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026