Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Lavas from transects across the Kurile Islands are showed geochemical variations related to changes in the compositions of fluids derived from the subducting slab. Enrichment factors for boron, cesium, arsenic, and antimony, all elements with strong affinities for water, decreased across the are. This decrease is presumably related to losses of water-rich fluids during the dehydration df the subducting plate. Enrichments of potassium, barium, beryllium-10, and the light rare earth elements remained constant; these species may move in silica-rich fluids liberated from the slab at greater depths.
open_in_new
Abstract
Pb-Pb mineral isochrons were determined for three cumulate eucrites (Moama, Moore County, and Serra de Mage) and three noncumulate eucrites (Nuevo Laredo, Bouvante, and Stannern). Two noncumulate eucrites (Bereba and Cachari) show disturbed Pb isotope patterns. The mineral isochron ages of cumulate eucrites range from 4.40 Ga to 4.48 Ga. The latter is the age of Moore County (4.484 +/- 0.019 Ga), which was also dated by the Sm-Nd method at 4.456 +/- 0.025 Ga. Nuevo Laredo and Bouvante give the same Pb-Pb age: 4.514 +/- 0.015 Ga and 4.510 +/- 0.004 Ga, respectively. The Pb isochron of Stannern corresponds to 4.128 +/- 0.016 Ga, which is a reequilibration age. Both Cachari and Bereba show evidence of isotope resetting at about 4 Ga. A Pb-Pb multicorrelation approach is introduced and applied to the data.
open_in_new
Abstract
B and Nb concentrations and B isotope composition were determined for lavas covering the entire length of the Kurile are. B/Nb and beta(11)B of these lavas show clear across-are Variations in which both are highest at the trench side and continuously decrease as the slab depth increases. B/Nb in the volcanic front lavas (8-25) is significantly higher than those of MORB and OIB, indicating that the mantle wedge is extensively metasomatized by B-rich fluid derived from the subducting slab. The frontal delta(11)B values are also out of the range of MORB and OIB, and systematic difference exists between Northern Kurile (NK: + 5.4 +/- 0.5 parts per thousand) and Central and Southern Kurile (CSK: + 4.3 +/- 0.3 parts per thousand). However, these two parameters approach or coincide with mantle values at the most back-are side. The delta(11)B and Sr-87/Sr-86 linearly correlate with Nb/B, suggesting control by simple mixing of two isotopically homogeneous components; that is, slab-derived fluid and mantle wedge. The estimated delta(11)B and Sr-87/Sr-86 of the fluid are +7.0 +/- 0.6 parts per thousand and 0.70326 +/- 0.00005 for NK, and + 6.3 +/- 0.3 parts per thousand and > 0.7033 for CSK, respectively. These fluid compositions are consistent with a source constituted by > 95% altered oceanic crust and < 5% oceanic sediment, with the slight difference between NK and CSK resulting from the different lithologies of subducting sediments. The mantle wedge beneath the Kurile are has B, Sr and Nd isotope compositions identical with MORB but shows significantly higher B/Nb. The above trends bear a close resemblance to those observed in the Izu are, strongly suggesting their universality in the are system. The across-are decline of B/Nb observed both in Kurile and Izu implies that the fluid flux from the slab continuously decreases as the slab depth increases. However, this relates only to a final stage of slab dehydration since most of the volatile components are lost at the fore-are region. In contrast to B, K is uniformly enriched across the are. This requires control by a K-bearing mineral phase either in the slab (phengite) or the mantle wedge (phlogopite), although such a mineral is responsible for only a small part of the whole fluid transport. (C) 1997 Elsevier Science B.V.
open_in_new
Abstract
Nb/B ratios and delta(11)B values of Mariana lavas reveal the involvement of two isotopically distinct slab-derived fluids in the magma genesis. The evidence of one type of fluid is observed in lavas of the islands of Anatahan, Alamagan, Agrigan, and Uracas, in which simple mixing between fluid with very homogeneous delta(11)B values (+5.40 parts per thousand +/- 0.05 parts per thousand) and the mantle wedge controls the magma compositions. In lavas of the islands of Guguan, Asuncion, and Pagan, however, the fluids that mixed with the mantle wedge are significantly heterogeneous in delta(11)B (+5.4 parts per thousand to +7.6 parts per thousand) even within a single island. The compositional difference between these two types of fluid can result from different ratios of sediment to altered oceanic crust (AOC) in the slabs, and this hypothesis is consistent,vith the Sr, Nd, and Pb isotope data. We propose that the variable isotope compositions of the latter fluid may be derived from local changes in sediment/AOC ratios of the slab that are caused by subduction of the Magellan seamounts beneath the Mariana are.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 85
  • Page 86
  • Page 87
  • Page 88
  • Current page 89
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025