Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet's orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 * 10-4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.
open_in_new
Abstract
TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Canas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312(-0.000035)(+0.000036) days, along with a radius of R-p = 0.99 +/- 0.03 R-J. We have also improved the constraints on planet mass, M-p = 0.67 +/- 0.04 M-J, and eccentricity, which is consistent with a circular orbit at 2 sigma (e = 0.044(-0.027)(+0.029)). TOI-1899 b occupies a unique region of parameter space as the coolest known (T-eq approximate to 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution.
open_in_new
Abstract
NEID is a high-resolution red-optical precision radial velocity (RV) spectrograph recently commissioned at the WIYN 3.5 m telescope at Kitt Peak National Observatory, Arizona, USA. NEID has an extremely stable environmental control system, and spans a wavelength range of 380-930 nm with two observing modes: a High Resolution mode at R & SIM; 112,000 for maximum RV precision, and a High Efficiency mode at R & SIM; 72,000 for faint targets. In this paper we present a detailed description of the components of NEID's optical fiber feed, which include the instrument, exposure meter, calibration system, and telescope fibers. Many parts of the optical fiber feed can lead to uncalibratable RV errors, which cannot be corrected for using a stable wavelength reference source. We show how these errors directly cascade down to performance requirements on the fiber feed and the scrambling system. We detail the design, assembly, and testing of each component. Designed and built from the bottom-up with a single-visit instrument precision requirement of 27 cm s(-1), close attention is paid to the error contribution from each NEID subsystem. Finally, we include the lab and on-sky tests performed during instrument commissioning to test the illumination stability, and discuss the path to achieving the instrumental stability required to search for a true Earth twin around a solar-type star.
open_in_new
Abstract
We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (rho = 0.80 -0.15+0.17 g cm-3) with a planetary radius of 9.7 +/- 0.5 R circle plus (0.87 +/- 0.04 R Jup) and a planetary mass of 135-18+17M circle plus (0.42 -0.06+0.05MJup ). It has an orbital period of 3.792622-0.000010+0.000010 days and an orbital eccentricity of 0.06-0.04+0.07 . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 +/- 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (less than or similar to 8 R circle plus). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.
open_in_new
Abstract
We report the measurement of the sky-projected obliquity angle lambda of the warm Jovian exoplanet TOI-1670 c via the Rossiter-McLaughlin effect. We observed the transit window during UT 2023 April 20 for 7 continuous hours with NEID on the 3.5 m WIYN Telescope at Kitt Peak National Observatory. TOI-1670 hosts a sub-Neptune (P similar to 11 days; planet b) interior to the warm Jovian (P similar to 40 days; planet c), which presents an opportunity to investigate the dynamics of a warm Jupiter with an inner companion. Additionally, TOI-1670 c is now among the longest-period planets to date to have its sky-projected obliquity angle measured. We find planet c is well aligned to the host star, with lambda = - 0.degrees 3 +/- 2.degrees 2. TOI-1670 c joins a growing census of aligned warm Jupiters around single stars and aligned planets in multiplanet systems.
open_in_new
Abstract
Boron has been detected on Mars in calcium-sulfate veins found within clay mineral rich rocks on Mars by the Mars Science Laboratory (MSL) Curiosity rover using Laser Induced Breakdown Spectroscopy (LIBS) analysis. Borates play a vital role in stabilizing ribose on Earth and has been suggested as a key requirement for life. Borate ions readily adsorb to phyllosilicate clay minerals. The discovery of boron on Mars in proximity to phyllosilicatebearing bedrock may have strong implications for potential past prebiotic conditions on Mars. In this study we generated a suite of clay minerals with adsorbed borate, including both typical terrestrial clay minerals (montmorillonite) and Mars-analog clay minerals (nontronite, saponite, griffithite), to understand controls on borate adsorption and to analyze with LIBS to compare with MSL data. Clay minerals were subjected to mineralogical and chemical analysis before and after adsorption. Adsorption analysis revealed that the Mars analog clay minerals adsorbed less boron than terrestrial counterparts, but within comparable amounts to those detected on Mars and in meteorites. Post-adsorption analysis by X-ray diffraction (XRD) revealed slight changes in the interlayer spacing of many of the clay minerals. Based on the adsorption analysis of the Mars-analog clay minerals, phyllosilicate-bearing bedrock in Gale crater may contain up to 90-110 ppm B. A series of borateenriched samples were created for analysis of LIBS spectra from ChemCam on the Curiosity rover and SuperCam on the Perseverance Rover. The results of this study may provide insight into martian groundwater geochemistry processes and the mobility of a key molecule connected with life.
open_in_new
Abstract
We present and analyze a three-dimensional (3D) volume of nanoscale helium bubbles in a tritium-exposed palladium alloy that we have reconstructed by transmission electron tomography. Helium nanobubbles commonly form within metals during exposure to radiation and radioactive substances. The radioactive decay of tritium stored in metal tritides often results in a high density of these nanoscale helium bubbles. A persistent question about the mechanisms of bubble nucleation and growth has been the role of lattice defects and impurities. To address this matter, we have determined the 3D positions of helium nanobubbles in a palladium-nickel alloy exposed to tritium for 3.8 years. We introduce methods to determine the 3D shapes, volumes, and spatial positions of helium bubbles as small as 1 nm within solids. We find that the size and spacing of observed nanobubbles are not correlated. Our results suggest that previous models, which hypothesize initial, rapid homogeneous nucleation of nanobubbles followed by diffusion-limited growth as helium atoms join the nearest bubble, are inadequate. We propose that the lack of size and spacing correlation is due to traps of atomic helium in the metal lattice that allow bubbles to nucleate even at low average helium concentration. This work will facilitate the development of high-fidelity models of helium nanobubble formation in radiation-exposed metals.
open_in_new
Abstract
A direct comparison between electron transparent transmission electron microscope (TEM) samples prepared with gallium (Ga) and xenon (Xe) focused ion beams (FIBs) is performed to determine if equivalent quality samples can be prepared with both ion species. We prepared samples using Ga FIB and Xe plasma focused ion beam (PFIB) while altering a variety of different deposition and milling parameters. The samples' final thicknesses were evaluated using STEM-EELS t/lambda data. Using the Ga FIB sample as a standard, we compared the Xe PFIB samples to the standard and to each other. We show that although the Xe PFIB sample preparation technique is quite different from the Ga FIB technique, it is possible to produce high-quality, large area TEM samples with Xe PFIB. We also describe best practices for a Xe PFIB TEM sample preparation workflow to enable consistent success for any thoughtful FIB operator. For Xe PFIB, we show that a decision must be made between the ultimate sample thickness and the size of the electron transparent region.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 82
  • Page 83
  • Page 84
  • Page 85
  • Current page 86
  • Page 87
  • Page 88
  • Page 89
  • Page 90
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025