Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Subduction termination leads to complex tectonic and geological activity, with the observational record often including clear evidence for exhumation, anomalous magmatism and topographic subsidence, followed by rapid uplift. However, the mechanism(s) driving these responses remain enigmatic and cannot be reconciled with our current understanding of post-subduction tectonics. A prime example of recent subduction termination can be found in northern Borneo (Malaysia), where subduction ceased in the late Miocene (at similar to 9 Ma). Here we use recently acquired passive seismic data to image, at unprecedented resolution (similar to 35 km), a sub-vertical lithospheric drip, inferred to have developed as a Rayleigh-Taylor gravitational instability from the root of a volcanic arc. We use thermo-mechanical simulations to reconcile these images with time- dependent dynamical processes within the crust and underlying mantle following subduction termination. Our model predictions illustrate how substantial extension from a lithospheric drip can thin the crust in an adjacent orogenic belt, facilitating lower-crustal melting and possible exhumation of sub-continental material, as is observed. These discoveries provide evidence for extension-driven melting of the lower crust, exhumation, core-complex formation and orogeny that also may occur in other areas of recent subduction termination.
open_in_new
Abstract
Studies of pressure induced phase transformations of ZnS nanoparticles using diamond anvil cells and synchrotron radiation were carried out to 20.0 GPa. Nanoparticles initially in the zinc-blende and wurtzite phases both transformed to the NaCl phase under the application of pressure. The zinc-blende particles, which were of 2.8 nm size, and the wurtzite particles, which were of 25.3 nm size, transformed to the NaCl phase at 19.0 and 15.0 GPa, respectively. Nanoparticles of the wurtzite phase never regained their initial wurtzite structure but returned to the zinc-blende phase upon downloading the pressure. The resultant zinc-blende nanoparticles transformed to the NaCl phase upon the reapplication of a pressure of 15.0 GPa. Nanoparticles initially in the zinc-blende phase returned to their original phase. (C) 2001 American Institute of Physics.
open_in_new
Abstract
Chromosome segregation, transcriptional regulation, and repair of DNA double- strand breaks require the cohesin protein complex. Cohesin holds the replicated chromosomes ( sister chromatids) together to mediate sister chromatid cohesion. The mechanism of how cohesion is established is unknown. We found that in budding yeast, the head domain of the Smc3p subunit of cohesin is acetylated by the Eco1p acetyltransferase at two evolutionarily conserved residues, promoting the chromatin- bound cohesin to tether sister chromatids. Smc3p acetylation is induced in S phase after the chromatin loading of cohesin and is suppressed in G(1) and G(2)/M. Smc3 head acetylation and its cell cycle regulation provide important insights into the biology and mechanism of cohesion establishment.
open_in_new
Abstract
With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database upto-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.
open_in_new
Abstract
Global biophysical products at decametric resolution derived from Sentinel-2 imagery have emerged as a promising dataset for fine-scale ecosystem modeling and agricultural monitoring. Evaluating uncertainties of different Sentinel-2 biophysical products over various regions and vegetation types is pivotal in the application of land surface models. In this study, we quantified the performance of Sentinel-2-derived Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and Fractional Vegetation Cover (FVC) estimates using global ground observations with consistent measurement criteria. Our results show that the accuracy of vegetation and non-vegetated classification based on Sentinel-2 surface reflectance products is greater than 95%, which indicates the vegetation identification is favorable for the practical application of biophysical estimates, as several LAI, FAPAR, and FVC retrievals were derived for non-vegetated pixels. The rate of best retrievals is similar between LAI and FAPAR estimates, both accounting for 87% of all vegetation pixels, while it is almost 100% for FVC estimates. Additionally, the Sentinel-2 FAPAR and FVC estimates agree well with ground-measurements-derived (GMD) reference maps, whereas a large discrepancy is observed for Sentinel-2 LAI estimates by comparing with both GMD effective LAI (LAI(e)) and actual LAI (LAI) reference maps. Furthermore, the uncertainties of Sentinel-2 LAI, FAPAR and FVC estimates are 1.09 m(2)/m(2), 1.14 m(2)/m(2), 0.13 and 0.17 through comparisons to ground LAI(e), LAI, FAPAR, and FVC measurements, respectively. Given the temporal difference between Sentinel-2 observations and ground measurements, Sentinel-2 LAI estimates are more consistent with LAI(e) than LAI values. The robustness of evaluation results can be further improved as long as more multi-temporal ground measurements across different regions are obtained. Overall, this study provides fundamental information about the performance of Sentinel-2 LAI, FAPAR, and FVC estimates, which imbues our confidence in the broad applications of these decametric products.
open_in_new
Abstract
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z > 6 has increased dramatically over the last few years, but previously only three radio-loud (R-2500 = f(nu,5 GHz)/f(nu,2500 A) > 10) sources had been reported at z > 6, with the most distant being a quasar at z = 6.18. Here we present the discovery and characterization of PSO J172.3556+18.7734, a radio-loud quasar at z = 6.823. This source has an Mg ii-based black hole mass of similar to 3 x 10(8) M and is one of the fastest accreting quasars, consistent with super-Eddington accretion. The ionized region around the quasar is among the largest measured at these redshifts, implying an active phase longer than the average lifetime of the z greater than or similar to 6 quasar population. From archival data, there is evidence that its 1.4 GHz emission has decreased by a factor of two over the last two decades. The quasar's radio spectrum between 1.4 and 3.0 GHz is steep (alpha = -1.31). Assuming the measured radio slope and extrapolating to rest-frame 5 GHz, the quasar has a radio-loudness parameter R-2500 similar to 90. A second steep radio source (alpha = -0.83) of comparable brightness to the quasar is only 231 away (similar to 120 kpc at z = 6.82; projection probability <2%), but shows no optical or near-infrared counterpart. Further follow-up is required to establish whether these two sources are physically associated.
open_in_new
Abstract
Spiral arms serve crucial purposes in star formation and galaxy evolution. In this paper, we report the identification of "A2744-DSG-z3," a dusty, multiarm spiral galaxy at z = 3.059 using the James Webb Space Telescope (JWST) NIRISS imaging and grism spectroscopy. A2744-DSG-z3 was discovered as a gravitationally lensed submillimeter galaxy with the Atacama Large Millimeter/submillimeter Array (ALMA). This is the most distant stellar spiral structure seen thus far, consistent with cosmological simulations that suggest z approximate to 3 as the epoch when spirals emerge. Thanks to the gravitational lensing and excellent spatial resolution of JWST, the spiral arms are resolved with a spatial resolution of approximate to 290 pc. Based on spectral energy distribution fitting, the spiral galaxy has a delensed star formation rate of 85 +/- 30 M (circle dot) yr(-1), and a stellar mass of approximate to 10(10.6) M (circle dot), indicating that A2744-DSG-z3 is a main-sequence galaxy. After fitting the spiral arms, we find a stellar effective radius (R (e,star)) of 5.0 +/- 1.5 kpc. Combining with ALMA measurements, we find that the effective radii ratio between dust and stars is approximate to 0.4, similar to those of massive star-forming galaxies (SFGs) at z similar to 2, indicating a compact dusty core in A2744-DSG-z3. Moreover, this galaxy appears to be living in a group environment: including A2744-DSG-z3, at least three galaxies at z = 3.05-3.06 are spectroscopically confirmed by JWST/NIRISS and ALMA, residing within a lensing-corrected projected scale of approximate to 70 kpc. This, along with the asymmetric brightness profile, further suggests that the spiral arms may be triggered by minor-merger events at z greater than or similar to 3.
open_in_new
Abstract
The launch of JWST opens a new window for studying the connection between metal-line absorbers and galaxies at the end of the Epoch of Reionization. Previous studies have detected absorber-galaxy pairs in limited quantities through ground-based observations. To enhance our understanding of the relationship between absorbers and their host galaxies at z > 5, we utilized the NIRCam wide-field slitless spectroscopy to search for absorber-associated galaxies by detecting their rest-frame optical emission lines (e.g., [O III] + H beta). We report the discovery of a Mg ii-associated galaxy at z = 5.428 using data from the JWST ASPIRE program. The Mg ii absorber is detected on the spectrum of quasar J0305-3150 with a rest-frame equivalent width of 0.74 angstrom. The associated galaxy has an [O III] luminosity of 10(42.5) erg s(-1) with an impact parameter of 24.9 pkpc. The joint Hubble Space Telescope-JWST spectral energy distribution (SED) implies a stellar mass and star formation rate of M-* approximate to 10(8.8) M-circle dot, star-formation rate approximate to 10 M-circle dot yr(-1). Its [O III] equivalent width and stellar mass are typical of [O III] emitters at this redshift. Furthermore, connecting the outflow starting time to the SED-derived stellar age, the outflow velocity of this galaxy is similar to 300 km s(-1), consistent with theoretical expectations. We identified six additional [O III] emitters with impact parameters of up to similar to 300 pkpc at similar redshifts ( divide dv divide < 1000 km s(-1)). The observed number is consistent with that in cosmological simulations. This pilot study suggests that systematically investigating the absorber-galaxy connection within the ASPIRE program will provide insights into the metal-enrichment history in the early Universe.
open_in_new
Abstract
The overturn of titanium-rich mantle cumulates has been invoked to explain the structure and dynamics of the Moon. These dense cumulates are stable at the core-mantle boundary (CMB) and could explain field observations inferred from geophysical studies. We report acoustic and electrical experiments on natural ilmenite-rutile aggregates up to 4.5 GPa and 1920 K. Seismic velocities show a weak pressure and temperature dependence, with Vs similar to 4.2 (+/-0.2) km/s and Vp similar to 8.0 (+/-0.2) km/s at the CMB conditions. Conductivity increases by a factor of 10(4) from 373 to 1920 K and is >10(3) S/m above 1573 K. Seismic and electrical models for the lunar mantle based on our results, considering mixtures of Fe-Ti oxides and olivine, indicate that field velocity and conductivity estimates are reproduced satisfactorily with 3-16 vol.% Fe-Ti oxides and 20 vol.% melt. Interactions between a Ti-rich, melt-bearing layer and the adjacent core likely affect the cooling and magnetic history of the Moon.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 84
  • Page 85
  • Page 86
  • Page 87
  • Current page 88
  • Page 89
  • Page 90
  • Page 91
  • Page 92
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025