Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Oxygen 3-isotope ratios of magnetite and carbonates in aqueously altered carbonaceous chondrites provide important clues to understanding the evolution of the fluid in the asteroidal parent bodies. We conducted oxygen 3-isotope analyses of magnetite, dolomite, and breunnerite in two sections of asteroid Ryugu returned samples, A0058 and C0002, using a secondary ion mass spectrometer (SIMS). Magnetite was analyzed by using a lower primary ion energy that reduced instrumental biases due to the crystal orientation effect. We found two groups of magnetite data identified from the SIMS pit morphologies: (1) higher delta O-18 (from 3 parts per thousand to 7 parts per thousand) and Delta O-17 (similar to 2 parts per thousand) with porous SIMS pits mostly from spherulitic magnetite, and (2) lower delta O-18 (similar to -3 parts per thousand) and variable Delta O-17 (0 parts per thousand-2 parts per thousand) mostly from euhedral magnetite. Dolomite and breunnerite analyses were conducted using multi-collection Faraday cup detectors with precisions <= 0.3 parts per thousand. The instrumental bias correction was applied based on carbonate compositions in two ways, using Fe and (Fe + Mn) contents, respectively, because Ryugu dolomite contains higher amounts of Mn than the terrestrial standard. Results of dolomite and breunnerite analyses show a narrow range of Delta O-17; 0.0 parts per thousand-0.3 parts per thousand for dolomite in A0058 and 0.2 parts per thousand-0.8 parts per thousand for dolomite and breunnerite in C0002. The majority of breunnerite, including large >= 100 mu m grains, show systematically lower delta O-18 (similar to 21 parts per thousand) than dolomite (25 parts per thousand-30 parts per thousand and 23 parts per thousand-27 parts per thousand depending on the instrumental bias corrections). The equilibrium temperatures between magnetite and dolomite from the coarse-grained lithology in A0058 are calculated to be 51 +/- 11 degrees C and 78 +/- 14 degrees C, depending on the instrumental bias correction scheme for dolomite; a reliable temperature estimate would require a Mn-bearing dolomite standard to evaluate the instrumental bias corrections, which is not currently available. These results indicate that the oxygen isotope ratios of aqueous fluids in the Ryugu parent asteroid were isotopically heterogeneous, either spatially, or temporary. Initial water ice accreted to the Ryugu parent body might have Delta O-17 > 2 parts per thousand that was melted and interacted with anhydrous solids with the initial Delta O-17 < 0 parts per thousand. In the early stage of aqueous alteration, spherulitic magnetite and calcite formed from aqueous fluid with Delta O-17 similar to 2 parts per thousand that was produced by isotope exchange between water (Delta O-17 > 2 parts per thousand) and anhydrous solids (Delta O-17 < 0 parts per thousand). Dolomite and breunnerite, along with some magnetite, formed at the later stage of aqueous alteration under higher water-to-rock ratios where the oxygen isotope ratios were nearly at equilibrium between fluid and solid phases. Including literature data, delta O-18 of carbonates decreased in the order calcite, dolomite, and breunnerite, suggesting that the temperature of alteration might have increased with the degree of aqueous alteration.
View Full Publication open_in_new
Abstract
By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena1. The megabar regime represents an interesting frontier, in which recent discoveries include high-temperature superconductors, as well as structural and valence phase transitions2-6. However, at such high pressures, many conventional measurement techniques fail. Here we demonstrate the ability to perform local magnetometry inside a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach uses a shallow layer of nitrogen-vacancy colour centres implanted directly within the anvil7-9; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the nitrogen-vacancy centre to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH9 (ref. 10). By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping both the diamagnetic response and flux trapping, we directly image the geometry of superconducting regions, showing marked inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed-loop optimization of superhydride materials synthesis.
View Full Publication open_in_new
Abstract
The determination of the temperature in and above the slab in subduction zones, using models where the top of the slab is precisely known, is important to test hypotheses regarding the causes of arc volcanism and intermediate-depth seismicity. While 2D and 3D models can predict the thermal structure with high precision for fixed slab geometries, a number of regions are characterized by relatively large geometrical changes over time. Examples include the flat slab segments in South America that evolved from more steeply dipping geometries to the present day flat slab geometry. We devise, implement, and test a numerical approach to model the thermal evolution of a subduction zone with prescribed changes in slab geometry over time. Our numerical model approximates the subduction zone geometry by employing time dependent deformation of a Bezier spline that is used as the slab interface in a finite element discretization of the Stokes and heat equations. We implement the numerical model using the FEniCS open source finite element suite and describe the means by which we compute approximations of the subduction zone velocity, temperature, and pressure fields. We compute and compare the 3D time evolving numerical model with its 2D analogy at cross-sections for slabs that evolve to the present-day structure of a flat segment of the subducting Nazca plate.
View Full Publication open_in_new
Abstract
Recent discoveries of transiting giant exoplanets around M-dwarf stars (GEMS), aided by the all-sky coverage of TESS, are starting to stretch theories of planet formation through the core-accretion scenario. Recent upper limits on their occurrence suggest that they decrease with lower stellar masses, with fewer GEMS around lower-mass stars compared to solar-type. In this paper, we discuss existing GEMS both through confirmed planets, as well as protoplanetary disk observations, and a combination of tests to reconcile these with theoretical predictions. We then introduce the Searching for GEMS survey, where we utilize multidimensional nonparameteric statistics to simulate hypothetical survey scenarios to predict the required sample size of transiting GEMS with mass measurements to robustly compare their bulk-density with canonical hot Jupiters orbiting FGK stars. Our Monte Carlo simulations predict that a robust comparison requires about 40 transiting GEMS (compared to the existing sample of similar to 15) with 5 sigma mass measurements. Furthermore, we discuss the limitations of existing occurrence estimates for GEMS and provide a brief description of our planned systematic search to improve the occurrence rate estimates for GEMS.
View Full Publication open_in_new
Abstract
Metasomatized mantle xenoliths containing hydrous minerals, such as amphiboles, serpentine, and phlogopite, likely represent the potential mineralogical compositions of the metasomatized upper mantle, where low seismic velocities are commonly observed. This study presents the first experimentally determined single-crystal elasticity model of an Fe-free near Ca, Mg-endmember amphibole tremolite at high pressure and/or temperature conditions (maximum pressure 7.3(1) GPa, maximum temperature 700 K) using Brillouin spectroscopy. We found that sound velocities of amphiboles strongly depend on the Fe content. We then calculated the sound velocities of 441 hydrous-mineral-bearing mantle xenoliths collected around the globe, and quantitatively evaluated the roles that amphiboles, phlogopite and serpentine played in producing the low velocity anomalies in the metasomatized upper mantle.
View Full Publication open_in_new
Abstract
The Mars 2020 Perseverance rover has examined and sampled sulfate-rich clastic rocks from the Hogwallow Flats member at Hawksbill Gap and the Yori Pass member at Cape Nukshak. Both strata are located on the Jezero crater western fan front, are lithologically and stratigraphically similar, and have been assigned to the Shenandoah formation. In situ analyses demonstrate that these are fine-grained sandstones composed of phyllosilicates, hematite, Ca-sulfates, Fe-Mg-sulfates, ferric sulfates, and possibly chloride salts. Sulfate minerals are found both as depositional grains and diagenetic features, including intergranular cement and vein- and vug-cements. Here, we describe the possibility of various sulfate phases to preserve potential biosignatures and the record of paleoenvironmental conditions in fluid and solid inclusions, based on findings from analog sulfate-rich rocks on Earth. The samples collected from these outcrops, Hazeltop and Bearwallow from Hogwallow Flats, and Kukaklek from Yori Pass, should be examined for such potential biosignatures and environmental indicators upon return to Earth.
View Full Publication open_in_new
Abstract
When diamond anvil cell (DAC) sample chambers are outfitted with both thermal insulation and electrodes, two cutting-edge experimental methods are enabled: Joule heating with spectroradiometric temperature measurement and electrical resistance measurements of samples heated to thousands of kelvin. The accuracy of temperature and resistance measurements, however, often suffers from poor control of the shape and location of the sample, electrodes, and thermal insulation. Here, we present a recipe for the reproducible and precise fabrication of DAC sample, electrodes, and thermal insulation using a three-layer microassembly. The microassembly contains two potassium chloride thermal insulation layers, four electrical leads, a sample, and a buttressing layer made of polycrystalline alumina. The sample, innermost electrodes, and buttress layer are fabricated by focused-ion-beam milling. Three iron samples are presented as proof of concept. Each is successfully compressed and pulsed Joule heated while maintaining a four-point probe configuration. The highest pressure-temperature condition achieved is similar to 150 GPa and 4000 K.
View Full Publication open_in_new
Abstract
Plastid terminal oxidase (PTOX) accepts electrons from plastoquinol to reduce molecular oxygen to water. We introduced the gene encoding Chlamydomonas reinhardtii (Cr)PTOX2 into the Arabidopsis (Arabidopsis thaliana) wild-type (WT) and proton gradient regulation5 (pgr5) mutant defective in cyclic electron transport around photosystem I (PSI). The accumulation of CrPTOX2 only mildly affected photosynthetic electron transport in the WT background during steady-state photosynthesis but partly complemented the induction of nonphotochemical quenching (NPQ) in the pgr5 background. During the induction of photosynthesis by actinic light (AL) of 130 mu mol photons m(-2) s(-1), the high level of PSII yield (Y(II)) was induced immediately after the onset of AL in WT plants accumulating CrPTOX2. NPQ was more rapidly induced in the transgenic plants than in WT plants. P700 was also oxidized immediately after the onset of AL. Although CrPTOX2 does not directly induce a proton concentration gradient (Delta pH) across the thylakoid membrane, the coupled reaction of PSII generated Delta pH to induce NPQ and the downregulation of the cytochrome b(6)f complex. Rapid induction of Y(II) and NPQ was also observed in the pgr5 plants accumulating CrPTOX2. In contrast to the WT background, P700 was not oxidized in the pgr5 background. Although the thylakoid lumen was acidified by CrPTOX2, PGR5 was essential for oxidizing P700. In addition to acidification of the thylakoid lumen to downregulate the cytochrome b(6)f complex (donor-side regulation), PGR5 may be required for draining electrons from PSI by transferring them to the plastoquinone pool. We propose a reevaluation of the contribution of this acceptor-side regulation by PGR5 in the photoprotection of PSI.
View Full Publication open_in_new
Abstract
High temperature increases meiotic instability in newly generated autotetraploid Arabidopsis thaliana by interfering with chromosome pairing.
View Full Publication open_in_new
Abstract
Continuous directed evolution of enzymes and other proteins in microbial hosts is capable of outperforming classical directed evolution by executing hypermutation and selection concurrently in vivo, at scale, with minimal manual input. Provided that a target enzyme's activity can be coupled to growth of the host cells, the activity can be improved simply by selecting for growth. Like all directed evolution, the continuous version requires no prior mechanistic knowledge of the target. Continuous directed evolution is thus a powerful way to modify plant or non-plant enzymes for use in plant metabolic research and engineering. Here, we first describe the basic features of the yeast (Saccharomyces cerevisiae) OrthoRep system for continuous directed evolution and compare it briefly with other systems. We then give a step-by-step account of three ways in which OrthoRep can be deployed to evolve primary metabolic enzymes, using a THI4 thiazole synthase as an example and illustrating the mutational outcomes obtained. We close by outlining applications of OrthoRep that serve growing demands (i) to change the characteristics of plant enzymes destined for return to plants, and (ii) to adapt ("plantize") enzymes from prokaryotes-especially exotic prokaryotes-to function well in mild, plant-like conditions.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • Current page 82
  • Page 83
  • Page 84
  • Page 85
  • Page 86
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025