Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The scaling of the specific Type Ia supernova (SN Ia) rate with host galaxy stellar mass (N) over dot(Ia)/M-star similar to M-star(-0.3) as measured in ASAS-SN and DES strongly suggests that the number of SNe Ia produced by a stellar population depends inversely on its metallicity. We estimate the strength of the required metallicity dependence by combining the average star formation histories (SFHs) of galaxies as a function of their stellar mass with the mass-metallicity relation (MZR) for galaxies and common parametrizations for the SN Ia delay-time distribution. The differences in SFHs can account for only similar to 30 per cent of the increase in the specific SN Ia rate between stellar masses of M-star = 10(10) and 10(7.2) M-circle dot. We find that an additional metallicity dependence of approximately similar to Z(-0.5) is required to explain the observed scaling. This scaling matches the metallicity dependence of the close binary fraction observed in APOGEE, suggesting that the enhanced SN Ia rate in low-mass galaxies can be explained by a combination of their more extended SFHs and a higher binary fraction due to their lower metallicities. Due to the shape of the MZR, only galaxies below M-star approximate to 3 x 10(9) M-circle dot are significantly affected by the metallicity-dependent SN Ia rates. The (N) over dot(Ia)/M-star similar to M-star(-0.3) scaling becomes shallower with increasing redshift, dropping by factor of similar to 2 at 10(7.2) M-circle dot between z = 0 and 1 with our similar to Z(-0.5) scaling. With metallicity-independent rates, this decrease is a factor of similar to 3. We discuss the implications of metallicity-dependent SN Ia rates for one-zone models of galactic chemical evolution.
open_in_new
Abstract
Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (less than or similar to au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H II regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning similar to 90 per cent of the pulsar's 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as similar to 10(5) au ( <1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context.
open_in_new
Abstract
Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (less than or similar to au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H ii regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning similar to 90 per cent of the pulsar's 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as similar to 10(5) au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context.
open_in_new
Abstract
From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens class of any single event. We investigate this method's effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of 30M circle dot. On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to approximate to 25%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.
open_in_new
Abstract
Stellar ages are elusive to measure, albeit being very important for understanding stellar evolution. We investigate the impact of photospheric activity on 2-min cadence light curves from the TESS/NASA mission of a selected sample of 30 solar-twins with well-determined ages. The photometric variability, A(T ESS), of the light curves due to rotational modulations by the presence of activ e re gions was estimated and correlated with chromospheric activity (Ca II H&K lines from an e xtensiv e High Accurac y Radial velocity Planet Searcher (HARPS) at the European Southern Observ atory (ESO) HARPS/ESO acti vity time series) and ages. Moreo v er, these results were compared with the total solar irradiance amplitude behaviour during the solar magnetic cycles 23 and 24, validating our findings for solar-twins. Our results show the photometric amplitude to be strongly correlated to the av erage lev el of chromospheric activity for the star sample. Also, we found a good correlation of A(T ESS) with stellar age (in Gyr) described by log t = + 12 . 239 - 0 . 894 log A(T ESS). In conclusion, stellar photometric variability A(T ESS )may be used as a simple age diagnostic for solar-twins.
open_in_new
Abstract
It has been suggested that small chemical anomalies observed in planet-hosting wide binary systems could be due to planet signatures, where the role of the planetary mass is still unknown. We search for a possible planet signature by analysing the T-C trends in the remarkable binary system HD 196067-HD 196068. At the moment, only HD 196067 is known to host a planet that is near the brown dwarf regime. We take advantage of the strong physical similarity between both stars, which is crucial to achieving the highest possible precision in stellar parameters and elemental chemical abundances. This system gives us a unique opportunity to explore whether a possible depletion of refractories in a binary system could be inhibited by the presence of a massive planet. We performed a line-by-line chemical differential study, employing the non-solar-scaled opacities, in order to reach the highest precision in the calculations. After differentially comparing both stars, HD 196067 displays a clear deficiency in refractory elements in the T-C plane, a lower iron content (0.051 dex), and also a lower Li I content (0.14 dex) than its companion. In addition, the differential abundances reveal a T-C trend. These targets represent the first cases of an abundance difference around a binary system hosting a super-Jupiter. Although we explored several scenarios to explain the chemical anomalies, none of them can be entirely ruled out. Additional monitoring of the system as well as studies of larger sample of wide binary systems hosting massive planets are needed to better understand the chemical abundance trend observed in HD 196067-68.
open_in_new
Abstract
We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1 griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host-galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z approximate to 0.5. We present relative SN rates from YSE's magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (similar to 71%) SNe Ia, 339 (similar to 23%) SNe II, and 96 (similar to 6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.
open_in_new
Abstract
The proximity and duration of the tidal disruption event ASASSN-14li led to the discovery of narrow, blueshifted absorption lines in X-rays and UV. The gas seen in X-ray absorption is consistent with bound material close to the apocenter of elliptical orbital paths, or with a disk wind similar to those seen in Seyfert-1 active galactic nuclei. We present a new analysis of the deepest high-resolution XMM-Newton and Chandra spectra of ASASSN-14li. Driven by the relative strengths of He-like and H-like charge states, the data require [N/C] & GE; 2.4, in qualitative agreement with UV spectral results. Flows of the kind seen in the X-ray spectrum of ASASSN-14li were not clearly predicted in simulations of TDEs; this left open the possibility that the observed absorption might be tied to gas released in prior active galactic nucleus (AGN) activity. However, the abundance pattern revealed in this analysis points to a single star rather than a standard AGN accretion flow comprised of myriad gas contributions. The simplest explanation of the data is likely that a moderately massive star (M & GSIM; 3 M (& ODOT;)) with significant CNO processing was disrupted. An alternative explanation is that a lower mass star was disrupted that had previously been stripped of its envelope. We discuss the strengths and limitations of our analysis and these interpretations.
open_in_new
Abstract
Dynamical perturbations from supermassive black hole (SMBH) binaries can increase the rates of tidal disruption events (TDEs). However, most previous work focuses on TDEs from the heavier black hole in the SMBH binary (SMBHB) system. In this work, we focus on the lighter black holes in SMBHB systems and show that they can experience a similarly dramatic increase in their TDE rate due to perturbations from a more massive companion. While the increase in TDEs around the more massive black hole is mostly due to chaotic orbital perturbations, we find that, around the smaller black hole, the eccentric Kozai-Lidov mechanism is dominant and capable of producing a comparably large number of TDEs. In this scenario, the mass derived from the light curve and spectra of TDEs caused by the lighter SMBH companion is expected to be significantly smaller than the SMBH mass estimated from galaxy scaling relations, which are dominated by the more massive companion. This apparent inconsistency can help find SMBHB candidates that are not currently accreting as active galactic nuclei and that are at separations too small for them to be resolved as two distinct sources. In the most extreme cases, these TDEs provide us with the exciting opportunity to study SMBHBs in galaxies where the primary SMBH is too massive to disrupt Sun-like stars.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 94
  • Page 95
  • Page 96
  • Page 97
  • Current page 98
  • Page 99
  • Page 100
  • Page 101
  • Page 102
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025