Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

    This 500-million-year-old trilobite from Utah has an organic-rich carapace that preserves a record of the original biomolecules. Credit: Robert Hazen.
    Breaking News
    November 17, 2025

    Chemical evidence of ancient life detected in 3.3-billion-year-old rocks

    Joe Berry and Lorenzo Rosa
    Breaking News
    November 14, 2025

    Two Carnegie Scientists Named 2025 Highly Cited Researchers

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Pampean flat slab in central Chile and Argentina is characterized by the inland migration and subsequent cessation of arc volcanism since the mid-Miocene. Slab flattening also affects the distribution and number of intermediate-depth earthquakes and the evolution of the overlying continental thermal structure. In this study, we combine thermal-mechanical models with petrological models to examine temporal changes in pressure, temperature, and composition during flat-slab subduction and estimate water carrying capacity, predicted melt distributions and predicted changes in melt composition. Model results indicate that the present-day flattened Nazca plate carries water to similar to 700 km inland from the trench and could cause flux melting if the material above the slab remains fertile. Observed slab seismicity matches areas where hydrated materials have similar to>3 wt% H2O in the oceanic crust and mantle lithosphere. Seismicity increases as slab water carrying capacity decreases (slab dehydration). As P-T conditions and compositions of the rock trapped above the slab change during slab flattening, flux melting switches from a peridotite-dominated early phase to a combined mid-ocean ridge basalt/eclogite and peridotite melting at similar to 8 Ma. The results provide broad consistency with known earthquake distributions, seismic velocities, and observed temporal and spatial changes in volcanic patterns above the Pampean flat slab and point toward the role of melt depletion in the decrease and ultimate cessation of arc volcanism in this region.
View Full Publication open_in_new
Abstract
We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudes m VR approximate to 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudes H similar to 10, as well as a dynamically detached object found at 76 au (semimajor axis a approximate to 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt.
View Full Publication open_in_new
Abstract
We present the methods and results from the discovery and photometric measurement of 26 bright VR > 24 trans-Neptunian objects (TNOs) during the first year (2019-20) of the DECam Ecliptic Exploration Project (DEEP). The DEEP survey is an observational TNO survey with wide sky coverage, high sensitivity, and a fast photometric cadence. We apply a computer vision technique known as a progressive probabilistic Hough transform to identify linearly moving transient sources within DEEP photometric catalogs. After subsequent visual vetting, we provide a photometric and astrometric catalog of our TNOs. By modeling the partial lightcurve amplitude distribution of the DEEP TNOs using Monte Carlo techniques, we find our data to be most consistent with an average TNO axis ratio b/a < 0.5, implying a population dominated by non-spherical objects. Based on ellipsoidal gravitational stability arguments, we find our data to be consistent with a TNO population containing a high fraction of contact binaries or other extremely non-spherical objects. We also discuss our data as evidence that the expected binarity fraction of TNOs may be size-dependent.
View Full Publication open_in_new
Abstract
We present the DECam Ecliptic Exploration Project (DEEP) survey strategy, including observing cadence for orbit determination, exposure times, field pointings and filter choices. The overall goal of the survey is to discover and characterize the orbits of a few thousand Trans-Neptunian objects (TNOs) using the Dark Energy Camera (DECam) on the Cerro Tololo Inter-American Observatory Blanco 4 m telescope. The experiment is designed to collect a very deep series of exposures totaling a few hours on sky for each of several 2.7 square degree DECam fields-of-view to achieve approximate depths of magnitude 26.2 using a wide V R filter that encompasses both the V and R bandpasses. In the first year, several nights were combined to achieve a sky area of about 34 square degrees. In subsequent years, the fields have been re-visited to allow TNOs to be tracked for orbit determination. When complete, DEEP will be the largest survey of the outer solar system ever undertaken in terms of newly discovered object numbers, and the most prolific at producing multiyear orbital information for the population of minor planets beyond Neptune at 30 au.
View Full Publication open_in_new
Abstract
We present here the DECam Ecliptic Exploration Project (DEEP), a 3 yr NOAO/NOIRLab Survey that was allocated 46.5 nights to discover and measure the properties of thousands of trans-Neptunian objects (TNOs) to magnitudes as faint as VR similar to 27 mag, corresponding to sizes as small as 20 km diameter. In this paper we present the science goals of this project, the experimental design of our survey, and a technical demonstration of our approach. The core of our project is "digital tracking," in which all collected images are combined at a range of motion vectors to detect unknown TNOs that are fainter than the single exposure depth of VR similar to 23 mag. Through this approach, we reach a depth that is approximately 2.5 mag fainter than the standard LSST "wide fast deep" nominal survey depth of 24.5 mag. DEEP will more than double the number of known TNOs with observational arcs of 24 hr or more, and increase by a factor of 10 or more the number of known small (<50 km) TNOs. We also describe our ancillary science goals, including measuring the mean shape distribution of very small main-belt asteroids, and briefly outline a set of forthcoming papers that present further aspects of and preliminary results from the DEEP program.
View Full Publication open_in_new
Abstract
We present a detailed study of the observational biases of the DECam Ecliptic Exploration Project's B1 data release and survey simulation software that enables direct statistical comparisons between models and our data. We inject a synthetic population of objects into the images, and then subsequently recover them in the same processing as our real detections. This enables us to characterize the survey's completeness as a function of apparent magnitudes and on-sky rates of motion. We study the statistically optimal functional form for the magnitude, and develop a methodology that can estimate the magnitude and rate efficiencies for all survey's pointing groups simultaneously. We have determined that our peak completeness is on average 80% in each pointing group, and our magnitude drops to 25% of this value at m(25) = 26.22. We describe the freely available survey simulation software and its methodology. We conclude by using it to infer that our effective search area for objects at 40 au is 14.8 deg(2), and that our lack of dynamically cold distant objects means that there at most 8 x 10(3) objects with 60 < a < 80 au and absolute magnitudes H <= 8.
View Full Publication open_in_new
Abstract
The search for habitable environments and biomarkers in exoplanetary atmospheres is the holy grail of exoplanet science. The detection of atmospheric signatures of habitable Earth-like exoplanets is challenging owing to their small planet-star size contrast and thin atmospheres with high mean molecular weight. Recently, a new class of habitable exoplanets, called Hycean worlds, has been proposed, defined as temperate ocean-covered worlds with H2-rich atmospheres. Their large sizes and extended atmospheres, compared to rocky planets of the same mass, make Hycean worlds significantly more accessible to atmospheric spectroscopy with JWST. Here we report a transmission spectrum of the candidate Hycean world K2-18 b, observed with the JWST NIRISS and NIRSpec instruments in the 0.9-5.2 mu m range. The spectrum reveals strong detections of methane (CH4) and carbon dioxide (CO2) at 5 sigma and 3 sigma confidence, respectively, with high volume mixing ratios of similar to 1% each in a H2-rich atmosphere. The abundant CH4 and CO2, along with the nondetection of ammonia (NH3), are consistent with chemical predictions for an ocean under a temperate H2-rich atmosphere on K2-18 b. The spectrum also suggests potential signs of dimethyl sulfide (DMS), which has been predicted to be an observable biomarker in Hycean worlds, motivating considerations of possible biological activity on the planet. The detection of CH4 resolves the long-standing missing methane problem for temperate exoplanets and the degeneracy in the atmospheric composition of K2-18 b from previous observations. We discuss possible implications of the findings, open questions, and future observations to explore this new regime in the search for life elsewhere.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • Current page 97
  • Page 98
  • Page 99
  • Page 100
  • Page 101
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025