Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Inelastic neutron scattering was used to measure the phonon density of states in fcc palladium and platinum metal at temperatures from 7 K to 1576 K. Both phonon-phonon interactions and electron-phonon interactions were calculated by methods based on density functional theory (DFT) and were consistent with the measured shifts and broadenings of phonons with temperature. Unlike the longitudinal modes, the characteristic transverse modes had a nonlinear dependence on temperature owing to the requirement for a population of thermal phonons for upscattering. Kohn anomalies were observed in the measurements at low temperature and were reproduced by calculations based on DFT. Contributions to the entropy from phonons and electrons were assessed and summed to obtain excellent agreement with prior calorimetric data. The entropy from thermal expansion is positive for both phonons and electrons but larger for phonons. The anharmonic phonon entropy is negative in Pt, but in Pd it changes from positive to negative with increasing temperature. Owing to the position of the Fermi level on the electronic DOS, the electronic entropy was sensitive to the adiabatic electron-phonon interaction in both Pd and Pt. The adiabatic EPI depended strongly on thermal atom displacements.
View Full Publication open_in_new
Abstract
Earth's core contains similar to 10% of a light element that may be a combination of Si, S, C, O or H, with Si potentially being the major light element. Metal-silicate partitioning of siderophile elements can place important constraints on the P-T-fO(2) and composition of the early Earth, but the effect of Si alloyed in Fe liquids is unknown for many of these elements. In particular, the effect of Si on the partitioning of highly siderophile elements (Au, Re and PGE) is virtually unknown. To address this gap in understanding, we have undertaken a systematic study of the highly siderophile elements Au, Pd, and Pt, and the volatile siderophile elements P, Ga, Cu, Zn, and Pb at variable Si content of metal, and 1600 degrees C and 1 GPa. From our experiments we derive epsilon interaction parameters between these elements and Si in Fe metallic liquids. The new parameters are used to update an activity model for trace siderophile elements in Fe alloys; Si causes large variation in the magnitude of activity coefficients of these elements in FeSi liquids. Because the interaction parameters are all positive, Si causes a decrease in their metal/silicate partition coefficients. We combine these new activity results with experimental studies of Au, Pd, Pt, P, Ga, Cu, Zn and Pb, to derive predictive expressions for metal/silicate partition coefficients which can then be applied to Earth. The expressions are applied to two scenarios for continuous accretion of Earth; specifically for constant and increasing fO(2) during accretion. The results indicate that mantle concentrations of P, Ga, Cu, Zn, and Pb can be explained by metalsilicate equilibrium during accretion of the Earth where Earth's early magma ocean deepens to pressures of 40-60 GPa. Au, Pd, and Pt, on the other hand become too high in the mantle in such a scenario, and require a later removal mechanism, rather than an addition as traditionally argued. A late reduction event that removes 0.5% metal from a shallow magma ocean can lower the Au, Pd, and Pt contents to values near the current day BSE. On the other hand, removal of 0.2-1.0% of a late sulfide-rich matte to the core would lower the Au, Pd, and Pt concentrations in the mantle, but not to chondritic relative concentrations observed in the BSE. If sulfide matte is called upon to remove HSEs, they must be later added via a late veneer to re-establish the high and chondritic relative PUM concentrations. These results suggest that although accretion and core formation (involving a Si, S, and C-bearing metallic liquid) were the primary processes establishing many of Earth's mantle volatile elements and HSE, a secondary removal process is required to establish HSEs at their current and near-chondritic relative BSE levels. Mn and P - two siderophile elements that are central to biochemical processes (photosynthesis and triphosphates,respectively) - have significant and opposite interactions with FeSi liquids, and their mantle concentrations would be notably different if Earth had a Si-free core. Published by Elsevier Ltd.
View Full Publication open_in_new
Abstract
We present Searches After Gravitational-waves Using ARizona Observatories (SAGUARO), a comprehensive effort dedicated to the discovery and characterization of optical counterparts to gravitational-wave (GW) events. SAGUARO utilizes ground-based facilities ranging from 1.5 to 10 m in diameter, located primarily in the Northern Hemisphere. We provide an overview of SAGUARO's telescopic resources, its pipeline for transient detection, and its database for candidate visualization. We describe SAGUARO' s discovery component, which utilizes the 5 deg 2 field of view optical imager on the Mt. Lemmon 1.5 m telescope, reaching limits of approximate to 21.3 AB mag while rapidly tiling large areas. We also describe the follow-up component of SAGUARO, used for rapid vetting and monitoring of optical candidates. With the onset of Advanced LIGO/Virgo's third observing run, we present results from the first three SAGUARO searches following the GW events S190408an, S190425z and S190426c, which serve as a valuable proof-of-concept of SAGUARO. We triggered and searched 15, 60, and 60 deg(2) respectively, 17.6, 1.4, and 41.8 hr after the initial GW alerts. We covered 7.8%, 3.0%, and 5.1% of the total probability within the GW event localizations, reaching 3 sigma limits of 19.8, 21.3, and 20.8 AB mag, respectively. Although no viable counterparts associated with these events were found, we recovered six known transients and ruled out five potential candidates. We also present Large Binocular Telescope spectroscopy of PS19eq/SN2019ebq, a promising kilonova candidate that was later determined to be a supernova. With the ability to tile large areas and conduct detailed follow-up, SAGUARO represents a significant addition to GW counterpart searches.
View Full Publication open_in_new
Abstract
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above- and belowground plant growth, likely enhancing plant-microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire 'reboots' the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.
View Full Publication open_in_new
Abstract
A method for measuring oxygen abundances using optical and far-infrared emission lines provides absolute metallicities of the interstellar gas in Markarian 71 and could be applied across cosmic history.
View Full Publication open_in_new
Abstract
We describe new JWST/NIRSpec observations of galaxies at z greater than or similar to 7 taken from the CEERS survey. Previous observations of this area have revealed associations of Ly alpha emitters at redshifts (z = 7.5, 7.7, and 8.7) where the intergalactic medium (IGM) is thought to be mostly neutral, leading to suggestions that these systems are situated in large ionized bubbles. We identify 21 z greater than or similar to 7 galaxies with robust redshifts in the CEERS data set, including 10 in the Ly alpha associations. Their spectra are indicative of very highly ionized and metal poor gas, with line ratios (O32 = 17.84 and Ne3O2 = 0.89, linear scale) and metallicity (12 + log (O/H) = 7.84) that are rarely seen at lower redshifts. We find that the most extreme spectral properties are found in the six z greater than or similar to 7 Ly alpha emitters in the sample. Each has a hard ionizing spectrum indicating that their visibility is likely enhanced by efficient ionizing photon production. Ly alpha velocity offsets are found to be very large (greater than or similar to 300 km s(-1)), likely also contributing to their detectability. We find that Ly alpha in z greater than or similar to 7 galaxies is 6-12 x weaker than in lower redshift samples with matched rest-optical spectral properties. If the bubbles around the Ly alpha emitters are relatively small (less than or similar to 0.5-1 pMpc), we may expect such significant attenuation of Ly alpha in these ionized regions. We discuss several other effects that may contribute to weaker Ly alpha emission at z greater than or similar to 7. Deep spectroscopy of fainter galaxies in the vicinity of the Ly alpha emitters will better characterize the physical scale of the ionized bubbles in this field.
View Full Publication open_in_new
Abstract
We describe new JWST/NIRSpec observations of galaxies at z greater than or similar to 7 taken from the CEERS survey. Previous observations of this area have revealed associations of Ly alpha emitters at redshifts (z = 7.5, 7.7, and 8.7) where the intergalactic medium (IGM) is thought to be mostly neutral, leading to suggestions that these systems are situated in large ionized bubbles. We identify 21 z greater than or similar to 7 galaxies with robust redshifts in the CEERS data set, including 10 in the Ly alpha associations. Their spectra are indicative of very highly ionized and metal poor gas, with line ratios (O32 = 17.84 and Ne3O2 = 0.89, linear scale) and metallicity (12+log (O/H)=7.84) that are rarely seen at lower redshifts. We find that the most extreme spectral properties are found in the six z greater than or similar to 7 Ly alpha emitters in the sample. Each has a hard ionizing spectrum indicating that their visibility is likely enhanced by efficient ionizing photon production. Ly alpha velocity offsets are found to be very large (greater than or similar to 300 km s(-1)), likely also contributing to their detectability. We find that Ly alpha in z greater than or similar to 7 galaxies is 6-12 x weaker than in lower redshift samples with matched rest-optical spectral properties. If the bubbles around the Ly alpha emitters are relatively small (less than or similar to 0.5-1 pMpc), we may expect such significant attenuation of Ly alpha in these ionized regions. We discuss several other effects that may contribute to weaker Ly alpha emission at z greater than or similar to 7. Deep spectroscopy of fainter galaxies in the vicinity of the Ly alpha emitters will better characterize the physical scale of the ionized bubbles in this field.
View Full Publication open_in_new
Abstract
Local Volume Mapper Spectrograph Control Package (LVMSCP) is the software that controls three spectrographs to acquire science spectral data cubes automatically. The software architecture design based on Python 3.9 follows a hierarchical structure of Actors, the unit that controls each piece of hardware. We used the software framework Codified Likeness Utility to implement each Actor. The Actors communicate with each other through RabbitMQ, which implements the Advanced Message Queuing Protocol. The Actor applies asynchronous programming with non-blocking procedures as the three spectrographs should operate simultaneously. For the requirement of incremental code change and management in the collaboration of the developers, we adopted the SDSS Github Action, which supports continuous integration/continuous deployment. As a result, unit testing with Pytest tested the individual components of the software, respectively, and lab testing with LVMSCP provided the spectra data for the spectrograph calibration. The LVMSCP provides the application programming interface to the Robotic Observation Package to fulfill the required scientific survey execution for the spectrographs.(c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
View Full Publication open_in_new
Abstract
We consider the general problem of a Parker-type non-relativistic isothermal wind from a rotating and magnetic star. Using the magnetohydrodynamics code athena++, we construct an array of simulations in the stellar rotation rate omega* and the isothermal sound speed cT, and calculate the mass, angular momentum, and energy loss rates across this parameter space. We also briefly consider the 3D case, with misaligned magnetic and rotation axes. We discuss applications of our results to the spin-down of normal stars, highly irradiated exoplanets, and to nascent highly magnetic and rapidly rotating neutron stars born in massive star core-collapse.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • Current page 101
  • Page 102
  • Page 103
  • Page 104
  • Page 105
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025