Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

    This 500-million-year-old trilobite from Utah has an organic-rich carapace that preserves a record of the original biomolecules. Credit: Robert Hazen.
    Breaking News
    November 17, 2025

    Chemical evidence of ancient life detected in 3.3-billion-year-old rocks

    Joe Berry and Lorenzo Rosa
    Breaking News
    November 14, 2025

    Two Carnegie Scientists Named 2025 Highly Cited Researchers

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We consider the general problem of a Parker-type non-relativistic isothermal wind from a rotating and magnetic star. Using the magnetohydrodynamics code athena++, we construct an array of simulations in the stellar rotation rate omega* and the isothermal sound speed cT, and calculate the mass, angular momentum, and energy loss rates across this parameter space. We also briefly consider the 3D case, with misaligned magnetic and rotation axes. We discuss applications of our results to the spin-down of normal stars, highly irradiated exoplanets, and to nascent highly magnetic and rapidly rotating neutron stars born in massive star core-collapse.
View Full Publication open_in_new
Abstract
Rapidly rotating magnetars have been associated with gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe). Using a suite of two-dimensional magnetohydrodynamic simulations at fixed neutrino luminosity and a couple of evolutionary models with evolving neutrino luminosity and magnetar spin period, we show that magnetars are viable central engines for powering GRBs and SLSNe. We also present analytical estimates of the energy outflow rate from the proto-neutron star (PNS) as a function of polar magnetic field strength B-0, PNS angular velocity Omega(star), PNS radius R-star, and mass outflow rate (M)over dot. We show that rapidly rotating magnetars with spin periods P-star less than or similar to 4 ms and polar magnetic field strength B-0 greater than or similar to 10(15) G can release 10(50) to 5 x 10(51) erg of energy during the first similar to 2 s of the cooling phase. Based on this result, it is plausible that sustained energy injection by magnetars through the relativistic wind phase can power GRBs. We also show that magnetars with moderate field strengths of B-0 less than or similar to 5 x 10(14) G do not release a large fraction of their rotational kinetic energy during the cooling phase and, hence, are not likely to power GRBs. Although we cannot simulate to times greater than similar to 3-5 s after a supernova, we can hypothesize that moderate field strength magnetars can brighten the supernova light curves by releasing their rotational kinetic energy via magnetic dipole radiation on time-scales of days to weeks, since these do not expend most of their rotational kinetic energy during the early cooling phase.
View Full Publication open_in_new
Abstract
M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similar T-eff similar to 2300-2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R similar to 35,000) K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find M-B=88.0(-3.2)(+3.4 )M(Jup), putting HIP 55507 B above the stellar-substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with a=38(-3)(+4) au and e = 0.40 +/- 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 +/- 0.13, [O/H] = 0.15 +/- 0.13, and C/O = 0.67 +/- 0.04. Moreover, we strongly detect (CO)-C-13 (7.8 sigma significance) and tentatively detect (H2O)-O-18 (3.7 sigma significance) in the companion's atmosphere and measure (CO)-C-12/(CO)-C-13=98(-22)(+28 )and (H2O)-O-16/(H2O)-O-18=240(-80)(+145) after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure (CO)-C-12/(CO)-C-13=79(-16)(+21) and (CO)-O-16/(CO)-O-18=288(-70)(+125) for the primary star. These results demonstrate that HIP 55507 A and B have consistent C-12/C-13 and O-16/O-18 to the <1 sigma level, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring (CO)-C-13 and (H2O)-O-18 abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.
View Full Publication open_in_new
Abstract
We present new optical transmission spectra for two hot Jupiters: WASP-25b (M = 0.56 M ( J ); R = 1.23 R ( J ); P = 3.76 days) and WASP-124b (M = 0.58 M ( J ); R = 1.34 R ( J ); P = 3.37 days), with wavelength coverages of 4200-9100 & ANGS; and 4570-9940 & ANGS;, respectively. These spectra are from the ESO Faint Object Spectrograph and Camera (v.2) mounted on the New Technology Telescope and Inamori-Magellan Areal Camera & Spectrograph on Magellan Baade. No strong spectral features were found in either spectra, with the data probing 4 and 6 scale heights, respectively. Exoretrievals and PLATON retrievals favor stellar activity for WASP-25b, while the data for WASP-124b did not favor one model over another. For both planets the retrievals found a wide range in the depths where the atmosphere could be optically thick (& SIM;0.4 & mu;-0.2 bars for WASP-25b and 1.6 & mu;-32 bars for WASP-124b) and recovered a temperature that is consistent with the planets' equilibrium temperatures, but with wide uncertainties (up to & PLUSMN;430 K). For WASP-25b, the models also favor stellar spots that are & SIM;500-3000 K cooler than the surrounding photosphere. The fairly weak constraints on parameters are owing to the relatively low precision of the data, with an average precision of 840 and 1240 ppm per bin for WASP-25b and WASP-124b, respectively. However, some contribution might still be due to an inherent absence of absorption or scattering in the planets' upper atmospheres, possibly because of aerosols. We attempt to fit the strength of the sodium signals to the aerosol-metallicity trend proposed by McGruder et al., and find WASP-25b and WASP-124b are consistent with the prediction, though their uncertainties are too large to confidently confirm the trend.
View Full Publication open_in_new
Abstract
We use the Gaia EDR3 to explore the Galactic supernova remnant (SNR) G272.2-3.2, produced by the explosion of a Type Ia supernova (SN Ia) about 7500 yr ago, to search for a surviving companion. From the abundances in the SNR ejecta, G272.2-3.2 is a normal SN Ia. The Gaia parallaxes allow us to select the stars located within the estimated distance range of the SNR, and the Gaia proper motions allow us to study their kinematics. From the Gaia EDR3 photometry, we construct the H-R diagram of the selected sample, which we compare with the theoretical predictions for the evolution of possible star companions of SNe Ia. We can discard several proposed types of companions by combining kinematics and photometry. We can also discard hypervelocity stars. We focus our study on the kinematically most peculiar star, Gaia EDR3 5323900215411075328 (hereafter MV-G272), an 8.9 sigma outlier in proper motion. It is of M1-M2 stellar type. Its trajectory on the sky locates it at the center of the SNR, 6000-8000 yr ago, a unique characteristic among the sample. Spectra allow a stellar parameter determination and a chemical abundance analysis. In conclusion, we have a candidate to be the surviving companion of the SN Ia that resulted in SNR G272.2-3.2. It is supported by its kinematical characteristics and its trajectory within the SNR. This opens the possibility of a single-degenerate scenario for an SN Ia with an M-type dwarf companion.
View Full Publication open_in_new
Abstract
The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (beta) was possible(2,3). In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos(4-6). Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be -33.0 +/- 1.0 (3 sigma) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried.
View Full Publication open_in_new
Abstract
Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon-oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (M B = -18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak B-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O i] lambda lambda 6300, 6364 (FWHM approximate to 2000 km s-1), strong, broad emission from [Ca ii] lambda lambda 7291, 7323 (FWHM approximate to 7300 km s-1), and a rapid Fe iii to Fe ii ionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T approximate to 500 K), combined with prominent [O i] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.
View Full Publication open_in_new
Abstract
We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO(J = 1-0). We jointly deconvolve the data from ALMA's 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10(4) M (circle dot) (3 sigma) and 40 pc-sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 x 10(5) M (circle dot) and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (greater than or similar to 100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (greater than or similar to 100 Myr). These interarm structures host little or no star formation traced by H alpha. The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds.
View Full Publication open_in_new
Abstract
We present an extensive grid of numerical simulations quantifying the uncertainties in measurements of the tip of the red giant branch (TRGB). These simulations incorporate a luminosity function composed of 2 mag of red giant branch (RGB) stars leading up to the tip, with asymptotic giant branch (AGB) stars contributing exclusively to the luminosity function for at least a magnitude above the RGB tip. We quantify the sensitivity of the TRGB detection and measurement to three important error sources: (1) the sample size of stars near the tip, (2) the photometric measurement uncertainties at the tip, and (3) the degree of self-crowding of the RGB population. The self-crowding creates a population of supra-TRGB stars due to the blending of one or more RGB stars just below the tip. This last population is ultimately difficult, although still possible, to disentangle from true AGB stars. In the analysis given here, the precepts and general methodology as used in the Chicago-Carnegie Hubble Program (CCHP) have been followed. However, in the appendix, we introduce and test a set of new tip detection kernels, which internally incorporate self-consistent smoothing. These are generalizations of the two-step model used by the CCHP (smoothing followed by Sobel-filter tip detection), where the new kernels are based on successive binomial-coefficient approximations to the derivative-of-a-Gaussian edge-detector, as is commonly used in modern digital image processing.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 99
  • Page 100
  • Page 101
  • Page 102
  • Current page 103
  • Page 104
  • Page 105
  • Page 106
  • Page 107
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025