Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) images of the luminous infrared (IR) galaxy VV 114 are presented. This redshift similar to 0.020 merger has a western component (VV 114W) rich in optical star clusters and an eastern component (VV 114E) hosting a luminous mid-IR nucleus hidden at UV and optical wavelengths by dust lanes. With MIRI, the VV 114E nucleus resolves primarily into bright NE and SW cores separated by 630 pc. This nucleus comprises 45% of the 15 mu m light of VV 114, with the NE and SW cores having IR luminosities, L (IR)(8 - 1000 mu m) similar to 8 +/- 0.8 x 10(10) L (circle dot) and similar to 5 +/- 0.5 x 10(10) L (circle dot), respectively, and IR densities, sigma(IR) greater than or similar to 2 +/- 0.2 x 10(13) L (circle dot) kpc(-2) and greater than or similar to 7 +/- 0.7 x 10(12) L (circle dot) kpc(-2), respectively-in the range of sigma(IR) for the Orion star-forming core and the nuclei of Arp 220. The NE core, previously speculated to have an active galactic nucleus (AGN), has starburst-like mid-IR colors. In contrast, the VV 114E SW core has AGN-like colors. Approximately 40 star-forming knots with L (IR) similar to 0.02-5 x 10(10) L (circle dot) are identified, 28% of which have no optical counterpart. Finally, diffuse emission accounts for 40%-60% of the mid-IR emission. Mostly notably, filamentary polycyclic aromatic hydrocarbon (PAH) emission stochastically excited by UV and optical photons accounts for half of the 7.7 mu m light of VV 114. This study illustrates the ability of JWST to detect obscured compact activity and distributed PAH emission in the most extreme starburst galaxies in the local universe.
View Full Publication open_in_new
Abstract
We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared images of IIZw096, a merging luminous infrared galaxy (LIRG) at z = 0.036. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (LIR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40%-70% of the IR bolometric luminosity, or 3-5 x 10(11) L-circle dot, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least 3-5 x 10(12) Le kpc(-2). In addition, we detect 11 other star-forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.
View Full Publication open_in_new
Abstract
We present mid-infrared spectroscopic observations of the nucleus of the nearby Seyfert galaxy NGC 7469 taken with the MIRI instrument on the James Webb Space Telescope (JWST) as part of Directors Discretionary Time Early Release Science program 1328. The high-resolution nuclear spectrum contains 19 emission lines covering a wide range of ionization. The high-ionization lines show broad, blueshifted emission reaching velocities up to 1700 km s(-1) and FWHM ranging from similar to 500 to 1100 km s(-1). The width of the broad emission and the broad-to-narrow line flux ratios correlate with ionization potential. The results suggest a decelerating, stratified, AGN-driven outflow emerging from the nucleus. The estimated mass outflow rate is 1-2 orders of magnitude larger than the current black hole accretion rate needed to power the AGN. Eight pure rotational H-2 emission lines are detected with intrinsic widths ranging from FWHM similar to 125 to 330 km s(-1). We estimate a total mass of warm H-2 gas of similar to 1.2 x 10(7) M (circle dot) in the central 100 pc. The PAH features are extremely weak in the nuclear spectrum, but a 6.2 mu m PAH feature with an equivalent width of similar to 0.07 mu m and a flux of 2.7 x 10(-17) W m(-2) is detected. The spectrum is steeply rising in the mid-infrared, with a silicate strength of similar to 0.02, significantly smaller than seen in most PG QSOs but comparable to other Seyfert 1s. These early MIRI mid-infrared IFU data highlight the power of JWST to probe the multiphase interstellar media surrounding actively accreting supermassive black holes.
View Full Publication open_in_new
Abstract
We present results from the James Webb Space Telescope Director's Discretionary Time Early Release Science program 1328 targeting the nearby, luminous infrared galaxy, VV 114. We use the MIRI and NIRSpec instruments to obtain integral-field spectroscopy of the heavily obscured eastern nucleus (V114E) and surrounding regions. The spatially resolved, high-resolution spectra reveal the physical conditions in the gas and dust over a projected area of 2-3 kpc that includes the two brightest IR sources, the NE and SW cores. Our observations show for the first time spectroscopic evidence that the SW core hosts an active galactic nucleus as evidenced by its very low 6.2 mu m and 3.3 mu m polycyclic aromatic hydrocarbon equivalent widths (0.12 and 0.017 mu m, respectively) and mid- and near-IR colors. Our observations of the NE core show signs of deeply embedded star formation including absorption features due to aliphatic hydrocarbons, large quantities of amorphous silicates, as well as HCN due to cool gas along the line of sight. We detect elevated [Fe ii]/Pf alpha consistent with extended shocks coincident with enhanced emission from warm H-2, far from the IR-bright cores and clumps. We also identify broadening and multiple kinematic components in both H-2 and fine structure lines caused by outflows and previously identified tidal features.
View Full Publication open_in_new
Abstract
We present the results of a James Webb Space Telescope NIRCam investigation into the young massive star cluster (YMC) population in the luminous infrared galaxy VV 114. We identify 374 compact YMC candidates with signal-to-noise ratios >= 3, 5, and 5 at F150W, F200W, and F356W, respectively. A direct comparison with our HST cluster catalog reveals that similar to 20% of these sources are undetected at optical wavelengths. Based on yggdrasil stellar population models, we identify 17 YMC candidates in our JWST imaging alone with F150W - F200W and F200W - F356W colors suggesting they are all very young, dusty (A(V) = 5-15), and massive (10(5.8) < M-circle dot < 10(6.1)). The discovery of these "hidden" sources, many of which are found in the "overlap" region between the two nuclei, quadruples the number of t < 3 Myr clusters and nearly doubles the number of t < 6 Myr clusters detected in VV 114. Now extending the cluster age distribution (dN d tau (sic) t(gamma)) to the youngest ages, we find a slope of gamma = -1.30 +/- 0.39 for 10(6) < tau(yr) < 10(7), which is consistent with the previously determined value from 10(7) < tau(yr) < 10(8.5), and confirms that VV 114 has a steep age distribution slope for all massive star clusters across the entire range of cluster ages observed. Finally, the consistency between our JWST-and HST-derived age distribution slopes indicates that the balance between cluster formation and destruction has not been significantly altered in VV 114 over the last 0.5 Gyr.
View Full Publication open_in_new
Abstract
Bars play an important role in mixing material in the inner regions of galaxies and stimulating radial migration. Previous observations have found evidence for the impact of a bar on metallicity gradients but the effect is still inconclusive. We use the TYPHOON/PrISM survey to investigate the metallicity gradients along and beyond the bar region across the entire star-forming disc of five nearby galaxies. Using emission line diagrams to identify star-forming spaxels, we recover the global metallicity gradients ranging from -0.0162 to -0.073dexkpc(-1) with evidence that the galactic bars act as an agent in affecting in situ star formation as well as the motions of gas and stars. We observe cases with a 'shallow-steep' metallicity radial profile, with evidence of the bar flattening the metallicity gradients inside the bar region (NGC 5068 and NGC 1566) and also note instances where the bar appears to drive a steeper metallicity gradient producing 'steep-shallow' metallicity profiles (NGC 1365 and NGC 1744). For NGC 2835, a 'steep-shallow' metallicity gradient break occurs at a distance similar to 4 times the bar radius, which is more likely driven by gas accretion to the outskirt of the galaxy instead of the bar. The variation of metallicity gradients around the bar region traces the fluctuations of star formation rate surface density in NGC 1365, NGC 1566, and NGC 1744. A larger sample combined with hydrodynamical simulations is required to further explore the diversity, and the relative importance of different ISM mixing mechanisms on the gas-phase metallicity gradients in local galaxies.
View Full Publication open_in_new
Abstract
We present James Webb Space Telescope (JWST) imaging of NGC 7469 with the Near-Infrared Camera and the Mid-InfraRed Instrument. NGC 7469 is a nearby, z = 0.01627, luminous infrared galaxy that hosts both a Seyfert Type-1.5 nucleus and a circumnuclear starburst ring with a radius of & SIM;0.5 kpc. The new near-infrared (NIR) JWST imaging reveals 66 star-forming regions, 37 of which were not detected by Hubble Space Telescope (HST) observations. Twenty-eight of the 37 sources have very red NIR colors that indicate obscurations up to A (v) & SIM; 7 and a contribution of at least 25% from hot dust emission to the 4.4 & mu;m band. Their NIR colors are also consistent with young (<5 Myr) stellar populations and more than half of them are coincident with the mid-infrared (MIR) emission peaks. These younger, dusty star-forming regions account for & SIM;6% and & SIM;17% of the total 1.5 and 4.4 & mu;m luminosity of the starburst ring, respectively. Thanks to JWST, we find a significant number of young dusty sources that were previously unseen due to dust extinction. The newly identified 28 young sources are a significant increase compared to the number of HST-detected young sources (4-5). This makes the total percentage of the young population rise from & SIM;15% to 48%. These results illustrate the effectiveness of JWST in identifying and characterizing previously hidden star formation in the densest star-forming environments around active galactic nuclei (AGN).
View Full Publication open_in_new
Abstract
We present James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) integral-field spectroscopy of the nearby merging, luminous infrared galaxy, NGC 7469. This galaxy hosts a Seyfert type-1.5 nucleus, a highly ionized outflow, and a bright, circumnuclear star-forming ring, making it an ideal target to study active galactic nucleus (AGN) feedback in the local universe. We take advantage of the high spatial/spectral resolution of JWST/ MIRI to isolate the star-forming regions surrounding the central active nucleus and study the properties of the dust and warm molecular gas on similar to 100 pc scales. The starburst ring exhibits prominent polycyclic aromatic hydrocarbon (PAH) emission, with grain sizes and ionization states varying by only similar to 30%, and a total star formation rate of 10-30(circle dot)yr(-1) derived from fine structure and recombination emission lines. Using pure rotational lines of H-2 we detect 1.2 x 107 M-circle dot of warm molecular gas at a temperature higher than 200 K in the ring. All PAH bands get significantly weaker toward the central source, where larger and possibly more ionized grains dominate the emission, likely the result of the ionizing radiation and/or the fast wind emerging from the AGN. The small grains and warm molecular gas in the bright regions of the ring however display properties consistent with normal starforming regions. These observations highlight the power of JWST to probe the inner regions of dusty, rapidly
View Full Publication open_in_new
Abstract
We analyze TYPHOON long-slit-absorption line spectra of the starburst barred spiral galaxy NGC 1365 obtained with the Progressive Integral Step Method covering an area of 15 kpc2. Applying a population synthesis technique, we determine the spatial distribution of ages and metallicities of the young and old stellar populations together with star formation rates, reddening, extinction, and the ratio R V of extinction to reddening. We detect a clear indication of inside-out growth of the stellar disk beyond 3 kpc characterized by an outward increasing luminosity fraction of the young stellar population, a decreasing average age, and a history of mass growth, which was finished 2 Gyr later in the outermost disk. The metallicity of the young stellar population is clearly super solar but decreases toward larger galactocentric radii with a gradient of -0.02 dex kpc-1. On the other hand, the metal content of the old population does not show a gradient and stays constant at a level roughly 0.4 dex lower than that of the young population. In the center of NGC 1365, we find a confined region where the metallicity of the young population drops dramatically and becomes lower than that of the old population. We attribute this to the infall of metal-poor gas, and additionally, to interrupted chemical evolution where star formation is stopped by active galactic nuclei and supernova feedback and then after several gigayears resumes with gas ejected by stellar winds from earlier generations of stars. We provide a simple model calculation as support for the latter.
View Full Publication open_in_new
Abstract
We present James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) integral field spectroscopy of the nearby luminous infrared galaxy NGC 7469. We take advantage of the high spatial/spectral resolution and wavelength coverage of JWST/NIRSpec to study the 3.3 mu m neutral polycyclic aromatic hydrocarbon (PAH) grain emission on similar to 200 pc scales. A clear change in the average grain properties between the star-forming ring and the central AGN is found. Regions in the vicinity of the AGN, with [Ne iii]/[Ne ii] > 0.25, tend to have larger grain sizes and lower aliphatic-to-aromatic (3.4/3.3) ratios, indicating that smaller grains are preferentially removed by photodestruction in the vicinity of the AGN. PAH emission at the nucleus is weak and shows a low 11.3/3.3 PAH ratio. We find an overall suppression of the total PAH emission relative to the ionized gas in the central 1 kpc region of the AGN in NGC 7469 compared to what has been observed with Spitzer on 3 kpc scales. However, the fractional 3.3 mu m-to-total PAH power is enhanced in the starburst ring, possibly due to a variety of physical effects on subkiloparsec scales, including recurrent fluorescence of small grains or multiple photon absorption by large grains. Finally, the IFU data show that while the 3.3 mu m PAH-derived star formation rate (SFR) in the ring is 27% higher than that inferred from the [Ne ii] and [Ne iii] emission lines, the integrated SFR derived from the 3.3 mu m feature would be underestimated by a factor of 2 due to the deficit of PAHs around the AGN, as might occur if a composite system like NGC 7469 were to be observed at high redshift.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 102
  • Page 103
  • Page 104
  • Page 105
  • Current page 106
  • Page 107
  • Page 108
  • Page 109
  • Page 110
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025