In situ high-pressure study of diborane by infrared spectroscopy
2009
JOURNAL OF CHEMICAL PHYSICS
DOI
10.1063/1.3257627
As the simplest stable boron hydride in its condensed phase, diborane exhibits an interesting structural chemistry with uniquely bridged hydrogen bonds. Here we report the first room-temperature infrared (IR) absorption spectra of solid diborane compressed to pressures as high as 50 GPa using a diamond anvil cell. At room temperature and 3.5 GPa, the IR spectrum of diborane displays rich sharply resolved fundamentals and overtones of the IR active bands, consistent with the previous low-temperature IR measurements of condensed diborane at ambient pressure. When compressed stepwise to 50 GPa, several structural transformations can be identified at pressures of similar to 3.5 GPa, similar to 6.9 GPa and similar to 14.7 GPa, as indicated by the changes in the band profile as well as the pressure dependence of the characteristic IR modes and bandwidths. These transformations can be interpreted as being enhanced intermolecular interactions resulting from compression. The geometry of the four-member ring of B(2)H(6), however, does not seem to be altered significantly during the transformations and the B(2)H(6) molecule remains chemically stable up to 50 GPa.