Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Joseph Gall at the microscope
    Breaking News
    September 16, 2025

    Joseph Gall posthumously receives Golden Goose Award

    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Sex determination is a key developmental process, yet it is remarkably variable across the tree of life. The dipteran family Sciaridae exhibits one of the most unusual sex determination systems in which mothers control offspring sex through selective elimination of paternal X chromosomes. Whereas in some members of the family females produce mixed-sex broods, others such as the dark-winged fungus gnat Bradysia coprophila are monogenic, with females producing single-sex broods. Female-producing females were previously found to be heterozygous for a large X-linked paracentric inversion (X'), which is maternally inherited and absent from male-producing females. Here we assembled and characterized the X' sequence. As close sequence homology between the X and X' made identification of the inversion challenging, we developed a k-mer-based approach to bin genomic reads before assembly. We confirmed that the inversion spans most of the X' chromosome (approximately 55Mb) and encodes around 3500 genes. Analysis of the divergence between the inversion and the homologous region of the X revealed that it originated very recently (<0.5 mya). Surprisingly, we found that the X' is more complex than previously thought and is likely to have undergone multiple rearrangements that have produced regions of varying ages, resembling a supergene composed of evolutionary strata. We found functional degradation of around 7.3% of genes within the region of recombination suppression, but no evidence of accumulation of repetitive elements. Our findings provide an indication that sex-linked inversions are driving turnover of the strange sex determination system in this family of flies.
View Full Publication open_in_new
Abstract
Sex determination is a key developmental process, yet it is remarkably variable across the tree of life. The dipteran family Sciaridae exhibits one of the most unusual sex determination systems in which mothers control offspring sex through selective elimination of paternal X chromosomes. Whereas in some members of the family females produce mixed-sex broods, others such as the dark-winged fungus gnat Bradysia coprophila are monogenic, with females producing single-sex broods. Female-producing females were previously found to be heterozygous for a large X-linked paracentric inversion (X & PRIME;), which is maternally inherited and absent from male-producing females. Here, we assembled and characterized the X & PRIME; sequence. As close sequence homology between the X and X & PRIME; made identification of the inversion challenging, we developed a k-mer-based approach to bin genomic reads before assembly. We confirmed that the inversion spans most of the X & PRIME; chromosome (& SIM;55 Mb) and encodes & SIM;3,500 genes. Analysis of the divergence between the inversion and the homologous region of the X revealed that it originated very recently (<0.5 Ma). Surprisingly, we found that the X & PRIME; is more complex than previously thought and is likely to have undergone multiple rearrangements that have produced regions of varying ages, resembling a supergene composed of evolutionary strata. We found functional degradation of & SIM;7.3% of genes within the region of recombination suppression, but no evidence of accumulation of repetitive elements. Our findings provide an indication that sex-linked inversions are driving turnover of the strange sex determination system in this family of flies.
View Full Publication open_in_new
Abstract
The level of resistance to radiation and the developmental and molecular responses can vary between species, and even between developmental stages of one species. For flies (order: Diptera), prior studies concluded that the fungus gnat Bradysia (Sciara) coprophila (sub-order: Nematocera) is more resistant to irradiation-induced mutations that cause visible phenotypes than the fruit fly Drosophila melanogaster (sub-order: Brachycera). Therefore, we characterized the effects of and level of resistance to ionizing radiation on B. coprophila throughout its life cycle. Our data show that B. coprophila embryos are highly sensitive to even low doses of gamma-irradiation, whereas late-stage larvae can tolerate up to 80 Gy (compared to 40 Gy for D. melanogaster) and still retain their ability to develop to adulthood, though with a developmental delay. To survey the genes involved in the early transcriptional response to irradiation of B. coprophila larvae, we compared larval RNA-seq profiles with and without radiation treatment. The up-regulated genes were enriched for DNA damage response genes, including those involved in DNA repair, cell cycle arrest, and apoptosis, whereas the down-regulated genes were enriched for developmental regulators, consistent with the developmental delay of irradiated larvae. Interestingly, members of the PARP and AGO families were highly up-regulated in the B. coprophila radiation response. We compared the transcriptome responses in B. coprophila to the transcriptome responses in D. melanogaster from 3 previous studies: whereas pathway responses are highly conserved, specific gene responses are less so. Our study lays the groundwork for future work on the radiation responses in Diptera.
View Full Publication open_in_new
Abstract
The diverse cytochrome P450 enzymes of insects play essential physiological roles and also play important roles in the metabolism of environmental chemicals such as insecticides. We manually curated the complement of P450 (CYP) genes, or CYPome, of the black fungus gnat, Bradysia (Sciara) coprophila (Diptera, Sciaroidea), a species with a variable number of chromosomes. This CYPome carries two types of "alien" P450 genes. The first type of alien P450s was found among the 163 CYP genes of the core genome (autosomes and X). They consist of 28 sequences resulting from horizontal gene transfer, with closest sequences not found in insects, but in other arthropods, often Collembola. These genes are not contaminants, because they are expressed genes with introns, found in synteny with regular dipteran genes, also found in B. odoriphaga and B. hygida. Two such "alien" genes are representatives of CYP clans not otherwise found in insects, a CYP53 sequence related to fungal CYP53 genes, and a CYP19-like sequence similar to some collembolan sequences but of unclear origin. The second type of alien P450s are represented by 99 sequences from germline-restricted chromosomes (GRC). While most are P450 pseudogenes, 33 are apparently intact, with half being more closely related to P450s from Cecidomyiidae than from Sciaridae, thus supporting the hypothesis of a cross-family hybridization origin of the GRC.
View Full Publication open_in_new
Abstract
One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z approximate to 8. Its two-tiered "wide and deep" strategy bridges significant gaps in existing near-infrared surveys. Here we report on z approximate to 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin(2) to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z approximate to 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z approximate to 8. Their derived stellar masses are on the order of a few x 10(9) M-circle dot, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z approximate to 8. The high number density of very luminous and very massive galaxies at z approximate to 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.
View Full Publication open_in_new
Abstract
We combine high-resolution Hubble Space Telescope/WFC3 images with multi- wavelength photometry to track the evolution of structure and activity of massive (M-* > 10(10)M(circle dot)) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star- forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z greater than or similar to 2, cSFGs present SFR = 100-200M(circle dot) yr(-1), yet their specific star formation rates (sSFR similar to 10(-9) yr(-1)) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (similar to 30%) more frequently. These properties suggest that cSFGs are formed by gas- rich processes (mergers or disk- instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10(8) yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z similar to 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z greater than or similar to 2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z less than or similar to 2) path in which larger SFGs form extended QGs without passing through a compact state.
View Full Publication open_in_new
Abstract
We have made a serendipitous discovery of a massive (similar to 5 x 10(11)M(circle dot)) cD galaxy at z = 1.096 in a candidate-rich cluster in the Hubble Ultra Deep Field (HUDF) area of GOODS-South. This brightest cluster galaxy (BCG) is the most distant cD galaxy confirmed to date. Ultra-deep HST/WFC3 images reveal an extended envelope starting from similar to 10 kpc and reaching similar to 70 kpc in radius along the semimajor axis. The spectral energy distributions indicate that both its inner component and outer envelope are composed of an old, passively evolving (specific star formation rate < 10-4 Gyr(-1)) stellar population. The cD galaxy lies on the same mass-size relation as the bulk of quiescent galaxies at similar redshifts. The cD galaxy has a higher stellar mass surface density (similar to M-*/R-50(2)) but a similar velocity dispersion (similar to root M-*/R-50) to those of more massive, nearby cDs. If the cD galaxy is one of the progenitors of today's more massive cDs, its size (R-50) and stellar mass have had to increase on average by factors of 3.4 +/- 1.1 and 3.3 +/- 1.3 over the past similar to 8 Gyr, respectively. Such increases in size and stellar mass without being accompanied by significant increases in velocity dispersion are consistent with evolutionary scenarios driven by both major and minor dissipationless (dry) mergers. If such cD envelopes originate from dry mergers, our discovery of even one example proves that some BCGs entered the dry merger phase at epochs earlier than z = 1. Our data match theoretical models which predict that the continuance of dry mergers at z < 1 can result in structures similar to those of massive cD galaxies seen today. Moreover, our discovery is a surprise given that the extreme depth of the HUDF is essential to reveal such an extended cD envelope at z > 1 and, yet, the HUDF covers only a minuscule region of sky (similar to 3.1 x 10(-8)). Adding that cDs are rare, our serendipitous discovery hints that such cDs may be more common than expected, perhaps even ubiquitous. Images reaching HUDF depths of more area (especially with cluster BCGs at z > 1) are needed to confirm this conjecture.
View Full Publication open_in_new
Abstract
Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a similar to 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10(10) < M*/M-circle dot < 10(11)), because the oblate fraction among massive (M* similar to 10(11) M-circle dot) was much higher in the past: 0.59 +/- 0.10 at z > 1, compared to 0.20 +/- 0.02 at z similar to 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log(M*/M-circle dot) < 10.5) increased toward the present, from z = 0 to 0.38 +/- 0.11 at z > 1 to 0.72 +/- 0.06 at z = 0. We speculate that this lower incidence of disks at early cosmic times can be attributed to two factors: low-mass, star-forming progenitors at z > 1 were not settled into stable disks to the same degree as at later cosmic times, and the stripping of gas from star-forming disk galaxies in dense environments is an increasingly important process at lower redshifts.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • Current page 75
  • Page 76
  • Page 77
  • Page 78
  • Page 79
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025