Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
A longstanding goal of biology is to identify the key genes and species that critically impact evolution, ecology, and health. Network analysis has revealed keystone species that regulate ecosystems and master regulators that regulate cellular genetic networks. Yet these studies have focused on pairwise biological interactions, which can be affected by the context of genetic background and other species present, generating higher-order interactions. The important regulators of higher-order interactions are unstudied. To address this, we applied a high-dimensional geometry approach that quantifies epistasis in a fitness landscape to ask how individual genes and species influence the interactions in the rest of the biological network. Wethen generated and also reanalyzed 5-dimensional datasets (two genetic, two microbiome). We identified key genes (e.g., the rbs locus and pykF) and species (e.g., Lactobacilli) that control the interactions of many other genes and species. These higher-order master regulators can induce or suppress evolutionary and ecological diversification by controlling the topography of the fitness landscape. Thus, we provide a method and mathematical justification for exploration of biological networks in higher dimensions.
open_in_new
Abstract
Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome.This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
open_in_new
Abstract
Climate change jeopardizes human health, global biodiversity, and sustainability of the biosphere. To make reliable predictions about climate change, scientists use Earth system models (ESMs) that integrate physical, chemical, and biological processes occurring on land, the oceans, and the atmosphere. Although critical for catalyzing coupled biogeochemical processes, microorganisms have traditionally been left out of ESMs. Here, we generate a "top 10" list of priorities, opportunities, and challenges for the explicit integration of microorganisms into ESMs. We discuss the need for coarse-graining microbial information into functionally relevant categories, as well as the capacity for microorganisms to rapidly evolve in response to climate-change drivers. Microbiologists are uniquely positioned to collect novel and valuable information necessary for next-generation ESMs, but this requires data harmonization and transdisciplinary collaboration to effectively guide adaptation strategies and mitigation policy.
open_in_new
Abstract
Dinoflagellate genomes often are very large and difficult to assemble, which has until recently precluded their analysis with modern functional genomic tools. Here, we present a protocol for mapping three-dimensional (3D) genome organization in dinoflagellates and using it for scaffolding their genome assemblies. We describe steps for crosslinking, nuclear lysis, denaturation, restriction digest, ligation, and DNA shearing and purification. We then detail procedures sequencing library generation and computational analysis, including initial Hi-C read mapping and 3D-DNA scaffolding/assembly correction. For complete details on the use and execution of this protocol, please refer to Marinov etal.1.
open_in_new
Abstract
Phototrophic organisms harbor two main bioenergetic hubs, photosynthesis and respiration, and these processes dynamically exchange and share metabolites to balance the energy of the cell. In microalgae and cyanobacteria, the crosstalk between the light-triggered reactions of photosynthesis and respiration is particularly prominent with respiratory O2 uptake which can be stimulated upon illumination. Since its discovery, this light-enhanced respiration has been proposed to be critical in dissipating the excess reducing power generated by photosynthesis. Importantly, the physiological role and putative molecular mechanism involved have just recently started to be understood. Here, we revisit the physiological functions and discuss possible molecular mechanisms of interactions between the photosynthetic and respiratory electron flows in microalgae and cyanobacteria.
open_in_new
Abstract
Phototrophic organisms harbor two main bioenergetic hubs, photosynthesis and respiration, and these processes dynamically exchange and share metabolites to balance the energy of the cell. In microalgae and cyanobacteria, the crosstalk between the light-triggered reactions of photosynthesis and respiration is particularly prominent with respiratory O2 uptake which can be stimulated upon illumination. Since its discovery, this light-enhanced respiration has been proposed to be critical in dissipating the excess reducing power generated by photosynthesis. Importantly, the physiological role and putative molecular mechanism involved have just recently started to be understood. Here, we revisit the physiological functions and discuss possible molecular mechanisms of interactions between the photosynthetic and respiratory electron flows in microalgae and cyanobacteria.
open_in_new
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
open_in_new
Abstract
The consumptive and nonconsumptive effects of predators on their prey and the indirect effects of these interactions that cascade through food webs have been studied for over half a century. In the northwest Atlantic, the stock of black sea bass (Centropristis striata) steeply declined during the 1980s. While population crashes of fished bivalve species coincided with those of black sea bass, the role of black sea bass in driving trophic cascades that indirectly influence bivalve survival has largely been overlooked. Over the past decade, black sea bass have not only been recovering in abundance but warming water temperatures have been driving a northward expansion of the extent of their seasonal migration, resulting in a particularly strong relative recovery along the south shore of Long Island, New York. To explore whether black sea bass alter the foraging rates of mud crabs (Dyspanopeus sayi) on a species of bivalve, blue mussels (Mytilus edulis), we manipulated the presence and position of sea bass within an array of mesocosm tanks. We found that the presence of black sea bass reduced the proportion of blue mussels consumed by mud crabs. Black sea bass presence indirectly elevated blue mussel survival by as much as 47.7% by reducing mud crab per capita consumption of blue mussels by 57.9%. However, there were limitations to the nonconsumptive effects of black sea bass that appeared to depend on their proximity to mud crabs. While our results are from an experimental setup with a simplified food chain and are context dependent, they emphasize the importance of studying how nonconsumptive effects of specific marine predators influence trophic cascades from both conceptual and applied coastal resource management standpoints. Our results suggest that the recovery of black sea bass may bode well for the population restoration of several species of bivalves within estuaries throughout their range. Further, our study provides evidence that indicates that the nonconsumptive effects of a recovering marine predator can indirectly elevate the survival of a basal food resource species.
open_in_new
Abstract
In mammalian females, quiescent primordial follicles serve as the ovarian reserve and sustain normal ovarian function and egg production via folliculogenesis. The loss of primordial follicles causes ovarian aging. Cellular senescence, characterized by cell cycle arrest and production of the senescence-associated secretory phenotype (SASP), is associated with tissue aging. In the present study, we report that some quiescent primary oocytes in primordial follicles become senescent in adult mouse ovaries. The senescent primary oocytes share senescence markers characterized in senescent somatic cells. The senescent primary oocytes were observed in young adult mouse ovaries, remained at approximately 15% of the total primary oocytes during ovarian aging from 6 months to 12 months, and accumulated in aged ovaries. Administration of a senolytic drug ABT263 to 3-month-old mice reduced the percentage of senescent primary oocytes and the transcription of the SASP cytokines in the ovary. In addition, led to increased numbers of primordial and total follicles and a higher rate of oocyte maturation and female fertility. Our study provides experimental evidence that primary oocytes, a germline cell type that is arrested in meiosis, become senescent in adult mouse ovaries and that senescent cell clearance reduced primordial follicle loss and mitigated ovarian aging phenotypes.
open_in_new
Abstract
Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated 10-fold by phosphorylation, and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than like that of slow anchoring myosin-1s found on endosomal membranes. We therefore propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Current page 74
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025