Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a similar to 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10(10) < M*/M-circle dot < 10(11)), because the oblate fraction among massive (M* similar to 10(11) M-circle dot) was much higher in the past: 0.59 +/- 0.10 at z > 1, compared to 0.20 +/- 0.02 at z similar to 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log(M*/M-circle dot) < 10.5) increased toward the present, from z = 0 to 0.38 +/- 0.11 at z > 1 to 0.72 +/- 0.06 at z = 0. We speculate that this lower incidence of disks at early cosmic times can be attributed to two factors: low-mass, star-forming progenitors at z > 1 were not settled into stable disks to the same degree as at later cosmic times, and the stripping of gas from star-forming disk galaxies in dense environments is an increasingly important process at lower redshifts.
open_in_new
Abstract
How nuclear morphology is regulated during development and disease remains poorly understood. In this issue of Developmental Cell, using a pronuclear assembly assay, Xue et al. (2013) demonstrate that Dppa2, a chromatin-bound microtubule regulator, controls both the morphology and function of the pronucleus by fine-tuning microtubule dynamics.
open_in_new
Abstract
The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.
open_in_new
Abstract
Lamins, the type V nuclear intermediate filament proteins, are reported to function in both interphase and mitosis. For example, lamin deletion in various cell types can lead to an uneven distribution of the nuclear pore complexes (NPCs) in the interphase nuclear envelope, whereas deletion of B-type lamins results in spindle orientation defects in mitotic neural progenitor cells. How lamins regulate these functions is unknown. Using mouse cells deleted of different combinations or all lamins, we show that lamins are required to prevent the aggregation of NPCs in the nuclear envelope near centrosomes in late G2 and prophase. This asymmetric NPC distribution in the absence of lamins is caused by dynein forces acting on NPCs via the dynein adaptor BICD2. We further show that asymmetric NPC distribution upon lamin depletion disrupts the distribution of BICD2 and p150 dynactin on the nuclear envelope at prophase, which results in inefficient dynein-driven centrosome separation during prophase. Therefore lamins regulate microtubule-based motor forces in vivo to ensure proper NPC distribution in interphase and centrosome separation in the mitotic prophase.
open_in_new
Abstract
We derive the total cold gas, atomic hydrogen, and molecular gas masses of approximately 24 000 galaxies covering four decades in stellar mass at redshifts 0.5 < z < 3.0, taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey survey. Our inferences are based on the inversion of a molecular hydrogen based star formation law, coupled with a prescription to separate atomic and molecular gas. We find that: (1) there is an increasing trend between the inferred cold gas (H I and H-2), H I, and H-2 mass and the stellar mass of galaxies down to stellar masses of 10(8)M(circle dot) already in place at z = 3; (2) the molecular fractions of cold gas increase with increasing stellar mass and look-back time; (3) there is hardly any evolution in the mean H I content of galaxies at fixed stellar mass; (4) the cold gas fraction and relative amount of molecular hydrogen in galaxies decrease at a relatively constant rate with time, independent of stellar mass; (5) there is a large population of low stellar mass galaxies dominated by atomic gas. These galaxies are very gas rich, but only a minor fraction of their gas is molecular; 6) the ratio between star formation rate (SFR) and inferred total cold gas mass (H I + H-2) of galaxies (i.e. star formation efficiency; SFE) increases with star formation at fixed stellar masses. Due to its simplicity, the presented approach is valuable to assess the impact of selection biases on small samples of directly observed gas masses and to extend scaling relations down to stellar mass ranges and redshifts that are currently difficult to probe with direct measurements of gas content.
open_in_new
Abstract
We present the stellar mass (M-*)-gas-phase metallicity relation (MZR) and its scatter at intermediate redshifts (0.5 <= z <= 0.7) for 1381 field galaxies collected from deep spectroscopic surveys. The star formation rate (SFR) and color at a given M-* of this magnitude-limited (R less than or similar to 24 AB) sample are representative of normal star-forming galaxies. For masses below 10(9) M-circle dot, our sample of 237 galaxies is similar to 10 times larger than those in previous studies beyond the local universe. This huge gain in sample size enables superior constraints on the MZR and its scatter in the low-mass regime. We find a power-law MZR at 10(8) M-circle dot < M-* < 10(11) M-circle dot: 12 + log (O/H) = (5.83 +/- 0.19)+(0.30 +/- 0.02) log (M-*/M-circle dot). At 10(9) M-circle dot < M-* < 10(10.5) M-circle dot, our MZR shows agreement with others measured at similar redshifts in the literature. Our power-law slope is, however, shallower than the extrapolation of the MZRs of others to masses below 10(9) M-circle dot. The SFR dependence of the MZR in our sample is weaker than that found for local galaxies (known as the fundamental metallicity relation). Compared to a variety of theoretical models, the slope of our MZR for low-mass galaxies agrees well with predictions incorporating supernova energy-driven winds. Being robust against currently uncertain metallicity calibrations, the scatter of the MZR serves as a powerful diagnostic of the stochastic history of gas accretion, gas recycling, and star formation of low-mass galaxies. Our major result is that the scatter of our MZR increases as M-* decreases. Our result implies that either the scatter of the baryonic accretion rate (sigma((M) over dot)) or the scatter of the M-*-M-halo relation (sigma(SHMR)) increases as M-* decreases. Moreover, our measure of scatter at z = 0.7 appears consistent with that found for local galaxies. This lack of redshift evolution constrains models of galaxy evolution to have both sigma((M) over dot) and sigma(SHMR) remain unchanged from z = 0.7 to z = 0.
open_in_new
Abstract
We present galaxy stellar mass functions (GSMFs) at z = 4-8 from a rest-frame ultraviolet (UV) selected sample of similar to 4500 galaxies, found via photometric redshifts over an area of similar to 280 arcmin(2) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)/Great Observatories Origins Deep Survey (GOODS) fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data to date and the relatively large volume allow us to place a better constraint at both the low- and high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear correlation between the rest-frame UV absolute magnitude at 1500 angstrom (M-UV) and logarithmic stellar mass (log M-*) that holds for galaxies with log(M-*/M-circle dot) less than or similar to 10. We use simulations to validate our method of measuring the slope of the log M-*-M-UV relation, finding that the bias is minimized with a hybrid technique combining photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not significantly evolve over z = 4-8, while the normalization of the trend exhibits a weak evolution toward lower masses at higher redshift. We combine the log M-*-M-UV distribution with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with increasing redshift from alpha = -1.55(-0.07)(+0.08) at z = 4 to alpha = -2.25(-0.35)(+0.72) at z = 8. The inferred stellar mass density, when integrated over M-* = 10(8)-10(13) M-circle dot, increases by a factor of 10(-2)(+30) between z = 7 and z = 4 and is in good agreement with the time integral of the cosmic star formation rate density.
open_in_new
Abstract
SThorium monocarbide (ThC) as a potential fuel for next generation nuclear reactor has been subjected to its structural stability investigation under high pressure, and so far no one reported the observation of structure phase transition induced by pressure. Here, utilizing the synchrotron X-ray diffraction technique, we for the first time, experimentally revealed the phase transition of ThC from B1 to P4/nmm at pressure of similar to 58 GPaat ambient temperature. A volume collapse of 10.2% was estimated during the phase transition. A modulus of 147 GPa for ThC at ambient pressure was obtained and the stoichiometry was attributed to the discrepancy of this value to the previous reports.
open_in_new
Abstract
We investigate the environmental quenching of galaxies, especially those with stellar masses (M-*) < 10(9.5) Me-circle dot, beyond the local universe. Essentially all local low-mass quenched galaxies (QGs) are believed to live close to massive central galaxies, which is a demonstration of environmental quenching. We use CANDELS data to test whether or not such a dwarf QG-massive central galaxy connection exists beyond the local universe. For this purpose, we only need a statistically representative, rather than complete, sample of low-mass galaxies, which enables our study to z greater than or similar to 1.5. For each low-mass galaxy, we measure the projected distance (d(proj)) to its nearest massive neighbor (M-* > 10(10.5) M-circle dot) within a redshift range. At a given z and M-*, the environmental quenching effect is considered to be observed if the d(proj) distribution of QGs (d(proj)(Q)) is significantly skewed toward lower values than that of star-forming galaxies (d(proj)(SF)). For galaxies with 10(8) M-circle dot < M-* < 10(10) M-circle dot, such a difference between d(proj)(Q) and d(proj)(SF) is detected up to z similar to 1. Also, about 10% of the quenched galaxies in our sample are located between two and four virial radii (R-Vir) of the massive halos. The median projected distance from low-mass QGs to their massive neighbors, d(proj)(Q)/R-Vir, decreases with satellite M-* at M-* less than or similar to 10(9.5) M-circle dot, but increases with satellite M-* at M-* greater than or similar to 10(9.5) M-circle dot. This trend suggests a smooth, if any, transition of the quenching timescale around M-* similar to 10(9.5) M-circle dot at 0.5 < z < 1.0.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025