Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Twentieth century industrial whaling pushed several species to the brink of extinction, with fin whales being the most impacted. However, a small, resident population in the Gulf of California was not targeted by whaling. Here, we analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of California (GOC) fin whale populations to investigate their demographic history and the genomic effects of natural and human-induced bottlenecks. We show that the two populations diverged similar to 16,000 years ago, after which the ENP population expanded and then suffered a 99% reduction in effective size during the whaling period. In contrast, the GOC population remained small and isolated, receiving less than one migrant per generation. However, this low level of migration has been crucial for maintaining its viability. Our study exposes the severity of whaling, emphasizes the importance of migration, and demonstrates the use of genome-based analyses and simulations to inform conservation strategies.
View Full Publication open_in_new
Abstract
Electrochemical sensors that use surface-immobilized DNA to bind analytes and transduce the binding into electrochemical signals, have the potential for rapid, specific, and sensitive detection of bioanalytes via a compact and portable platform. However, accessing the structure of these surfaces/interfaces at the relevant spatial scale (<10 nm), which determines the interfacial interactions and ultimately sensing performance, remains an unsolved challenge. Here, we review studies that have used high resolution atomic force microscope imaging and spatial statistical analysis tools to understand crowding interactions between thiolated DNA probes immobilized on gold electrodes and how such interactions impact target binding. We also review related studies that attempt to control the nanoscale spatial arrangement of the immobilized recog-nition elements to optimize sensing performance. These efforts have led to new advances in understanding of the structure-function relationships of DNA-based electro-chemical biosensors to move the field toward rational engi-neering of these biosensing interfaces.
View Full Publication open_in_new
Abstract
Chlamydomonas reinhardtii is a model organism for various processes, from photosynthesis to cilia biogenesis, and a great chassis to learn more about biofuel production. This is due to the width of molecular tools available, which have recently expanded with the development of a modular cloning system but, most importantly, with CRISPR/Cas9 editing now being possible. This technique has proven to be more efficient in the absence of a cell wall by using specific mutants or by digesting Chlamydomonas cell wall using the mating-specific metalloprotease autolysin (also called gametolysin). Multiple protocols have been used and shared for autolysin production from Chlamydomonas cells; however, they provide very inconsistent results, which hinders the capacity to routinely perform CRISPR mutagenesis. Here, we propose a simple protocol for autolysin production requiring transfer of cells from plates into a dense liquid suspension, gametogenesis by overnight incubation before mixing of gametes, and enzyme harvesting after 2 h. This protocol has shown to be highly efficient for autolysin production regardless of precise control over cell density at any step. Requiring a minimal amount of labor, it will provide a simple, ready-to-go approach to produce an enzyme critical for the generation of targeted mutants.
View Full Publication open_in_new
Abstract
Background: A culture of the green algae Chlamydomonas reinhardtii was accidentally contaminated with three different bacteria in our laboratory facilities. This contaminated alga culture showed increased algal biohydrogen production. These three bacteria were independently isolated.
View Full Publication open_in_new
Abstract
A naturally occurring multispecies bacterial community composed of Bacillus cereus and two novel bacteria (Microbacterium forte sp. nov. and Stenotrophomonas goyi sp. nov.) has been identified from a contaminated culture of the microalga Chlamydomonas reinhardtii. When incubated in mannitol- and yeast extract-containing medium, this bacterial community can promote and sustain algal hydrogen production up to 313 mL H-2L-1 for 17 days and 163.5 mL H-2L-1 for 25 days in high-cell (76.7 mu gmL(-1) of initial chlorophyll) and low-cell density (10 mu gmL(-1) of initial chlorophyll) algal cultures, respectively. In low-cell density algal cultures, hydrogen production was compatible with algal growth (reaching up to 60 mu gmL(-1) of chlorophyll). Among the bacterial community, M. forte sp. nov. was the sole responsible for the improvement in hydrogen production. However, algal growth was not observed in the Chlamydomonas-M. forte sp. nov. consortium during hydrogen-producing conditions (hypoxia), suggesting that the presence of B. cereus and S. goyi sp. nov. could be crucial to support the algal growth during hypoxia. Still, under non-hydrogen producing conditions (aerobiosis) the Chlamydomonas-M. forte sp. nov. consortium allowed algal growth (up to 40 mu gmL(-1) of chlorophyll) and long-term algal viability (>45 days). The genome sequence and growth tests of M. forte sp. nov. have revealed that this bacterium is auxotroph for biotin and thiamine and unable to use sulfate as sulfur source; it requires S-reduced forms such as cysteine and methionine. Cocultures of Chlamydomonas reinhardtii and M. forte sp. nov. established a mutualistic association: the alga complemented the nutrient deficiencies of the bacterium, while the bacterium released ammonium (0.19 mMday(-1)) and acetic acid (0.15 mMday(-1)) for the alga. This work offers a promising avenue for photohydrogen production concomitant with algal biomass generation using nutrients not suitable for mixotrophic algal growth.
View Full Publication open_in_new
Abstract
Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus aurantiacus, exhibited patterns indicative of alternative stable states through domination by either bacteria or yeasts within individual flowers. In laboratory experiments, Acinetobacter nectaris, the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii, the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris-induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization.
View Full Publication open_in_new
Abstract
Taxonomic assignment of OTUs is an important bioinformatics step in analyzing environmental sequencing data. Pairwise-alignment and phylogenetic-placement methods represent two alternative approaches to taxonomic assignments, but their results can differ. Here we used available colpodean ciliate OTUs from forest soils to compare the taxonomic assignments of VSEARCH (which performs pairwise alignments) and EPA-ng (which performs phylogenetic placements). We showed that when there are differences in taxonomic assignments between pairwise alignments and phylogenetic placements at the subtaxon level, there is a low pairwise similarity of the OTUs to the reference database. We then showcase how the output of EPA-ng can be further evaluated using GAPPA to assess the taxonomic assignments when there exist multiple equally likely placements of an OTU, by taking into account the sum over the likelihood weights of the OUT placements within a subtaxon, and the branch distances between equally likely placement locations. We also inferred evolutionary and ecological characteristics of the colpodean OTUs using their placements within subtaxa. This study demonstrates how to fully analyse the output of EPA-ng, by using GAPPA in conjunction with knowledge of the taxonomic diversity of the clade of interest.
View Full Publication open_in_new
Abstract
Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus) aurantiacus, exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris, the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii, the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris-induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization.
View Full Publication open_in_new
Abstract
Taxonomic assignment of operational taxonomic units (OTUs) is an important bioinformatics step in analyzing environmental sequencing data. Pairwise alignment and phylogenetic-placement methods represent two alternative approaches to taxonomic assignments, but their results can differ. Here we used available colpodean ciliate OTUs from forest soils to compare the taxonomic assignments of VSEARCH (which performs pairwise alignments) and EPA-ng (which performs phylogenetic placements). We showed that when there are differences in taxonomic assignments between pairwise alignments and phylogenetic placements at the subtaxon level, there is a low pairwise similarity of the OTUs to the reference database. We then showcase how the output of EPA-ng can be further evaluated using GAPPA to assess the taxonomic assignments when there exist multiple equally likely placements of an OTU, by taking into account the sum over the likelihood weights of the OTU placements within a subtaxon, and the branch distances between equally likely placement locations. We also inferred the evolutionary and ecological characteristics of the colpodean OTUs using their placements within subtaxa. This study demonstrates how to fully analyze the output of EPA-ng, by using GAPPA in conjunction with knowledge of the taxonomic diversity of the clade of interest.
View Full Publication open_in_new
Abstract
Interactions between algae and bacteria are ubiquitous and play fundamental roles in nutrient cycling and biomass production. Recent studies have shown that the plant auxin indole acetic acid (IAA) can mediate chemical crosstalk between algae and bacteria, resembling its role in plant-bacterial associations. Here, we report a mechanism for algal extracellular IAA production from L-tryptophan mediated by the enzyme L-amino acid oxidase (LAO1) in the model Chlamydomonas reinhardtii. High levels of IAA inhibit algal cell multiplication and chlorophyll degradation, and these inhibitory effects can be relieved by the presence of the plant-growth-promoting bacterium (PGPB) Methylobacterium aquaticum, whose growth is mutualistically enhanced by the presence of the alga. These findings reveal a complex interplay of microbial auxin production and degradation by algal-bacterial consortia and draws attention to potential ecophysiological roles of terrestrial microalgae and PGPB in association with land plants.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • Current page 73
  • Page 74
  • Page 75
  • Page 76
  • Page 77
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026