Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present results from the Quasar hosts Unveiled by high Angular Resolution Techniques survey studying the circumgalactic medium (CGM) by observing rest-frame UV emission lines Ly alpha, C iv, and He ii around two radio-loud quasars, 3C 9 (z = 2.02) and 4C 05.84 (z = 2.32), using the Keck Cosmic Web Imager. We detect large-scale Ly alpha nebulae around both quasars with projected diameters similar to 100 kpc, with spatially resolved, embedded 15-30 kpc He ii and C iv nebulae around both quasars as well as kinematically distinct He ii and C iv nebulae at a physical separation of similar to 15 kpc from both quasars. Observations of H alpha, H beta, and [O iii] emission using Keck MOSFIRE spectroscopically confirm that the Ly alpha nebulae extend to companion galaxies and that these quasars are in a protogroup/protocluster environment. We confirm that the He ii and C iv emission is kinematically and spatially coincident with the companion galaxies. We estimate the virial masses of the companion galaxies, their metallicities, and star formation rates, and investigate the sources of ionization. We measure the dynamical mass of the host dark matter halos and estimate that the dark matter halos of these systems will grow to a mass of 2 x 1014 M circle dot (3C 9) and 2 x 1013 M circle dot (4C 05.84) by z = 0. The combined CGM and companion galaxies observations indicate Ly alpha substructure can indicate the presence of companion galaxies in the CGM.
open_in_new
Abstract
"Changing-look" active galactic nuclei (CL-AGNs) challenge our basic ideas about the physics of accretion flows and circumnuclear gas around supermassive black holes. Using first-year Sloan Digital Sky Survey V (SDSS-V) repeated spectroscopy of nearly 29,000 previously known active galactic nuclei (AGNs), combined with dedicated follow-up spectroscopy, and publicly available optical light curves, we have identified 116 CL-AGNs where (at least) one broad emission line has essentially (dis-)appeared, as well as 88 other extremely variable systems. Our CL-AGN sample, with 107 newly identified cases, is the largest reported to date, and includes similar to 0.4% of the AGNs reobserved in first-year SDSS-V operations. Among our CL-AGNs, 67% exhibit dimming while 33% exhibit brightening. Our sample probes extreme AGN spectral variability on months to decades timescales, including some cases of recurring transitions on surprisingly short timescales (less than or similar to 2 months in the rest frame). We find that CL events are preferentially found in lower-Eddington-ratio (f Edd) systems: Our CL-AGNs have a f Edd distribution that significantly differs from that of a carefully constructed, redshift- and luminosity-matched control sample (Anderson-Darling test yielding p AD approximate to 6 x 10-5; median f Edd approximate to 0.025 versus 0.043). This preference for low f Edd strengthens previous findings of higher CL-AGN incidence at lower f Edd, found in smaller samples. Finally, we show that the broad Mg ii emission line in our CL-AGN sample tends to vary significantly less than the broad H beta emission line. Our large CL-AGN sample demonstrates the advantages and challenges in using multi-epoch spectroscopy from large surveys to study extreme AGN variability and physics.
open_in_new
Abstract
The Hercules ultrafaint dwarf galaxy (UFD) has long been hypothesized to be tidally disrupting, yet no conclusive evidence has been found for tidal disruption owing partly to difficulties in identifying Hercules member stars. In this work, we present a homogeneous reanalysis of new and existing observations of Hercules, including the detection of a new potential member star located similar to 1 degrees (similar to 1.7 kpc) west of the center of the system. In addition to measuring the line-of-sight velocity gradient, we compare predictions from dynamical models of stream formation to these observations. We report an updated velocity dispersion measurement based on 28 stars, 1.9(-0.6)(+0.6) km s(-1), which is significantly lower than previous measurements. We find that the line-of-sight velocity gradient is 1.8(-1.8)(+1.8) km s(-1) kpc along the major axis of Hercules, consistent with zero within 1 sigma. Our dynamical models of stream formation, on the other hand, can reproduce the morphology of the Hercules UFD, specifically the misalignment between the elongation and the orbital motion direction. Additionally, these dynamical models indicate that any radial velocity gradient from tidal disruption would be too small, 0.00(-0.91)(+0.97) km s(-1 )kpc, to be detectable with current sample sizes. Combined with our analysis of the tidal radius evolution of the system as a function of its orbital phase, we argue that it is likely that Hercules is indeed currently undergoing tidal disruption in its extended stellar halo with a line-of-sight velocity gradient too small to be detected with current observational data sets..
open_in_new
Abstract
The aluminous calcium-ferrite type phase (CF) and new aluminous phase (NAL) are thought to hold the excess alumina produced by the decomposition of garnet in MORB compositions in the lower mantle. The respective stabilities of CF and NAL in the nepheline-spinel binary (NaAlSiO4-MgAl2O4) are well established. However with the addition of further components the phase relations at lower mantle conditions remain unclear. Here we investigate a range of compositions around the nepheline apex of the nepheline-kalsilite-spinel compositional join (NaAlSiO4-KAlSiO4-MgAl2O4) at 28-78GPa and 2000K. Our experiments indicate that even small amounts of a kalsilite (KAlSiO4) component dramatically impact phase relations. We find NAL to be stable up to at least 71GPa in potassium-bearing compositions. This demonstrates the stabilizing effect of potassium on NAL, because NAL is not observed at pressures above 48GPa on the nepheline-spinel binary. We also observe a broadening of the CF stability field to incorporate larger amounts of potassium with increasing pressure. For pressures below 50GPa only minor amounts (<0.011(1)KK+Na+Mg) of potassium are soluble in CF, whereas at 68GPa, we find a solubility in CF of at least 0.088(3)KK+Na+Mg. This indicates that CF and NAL are suitable hosts of the alkali content of MORB compositions at lower mantle conditions. For sedimentary compositions at lower mantle pressures, we expect K-Hollandite to be stable in addition to CF and NAL for pressures of 28-48GPa, based on our simplified compositions.
open_in_new
Abstract
Seismic tomography has shown that the shear wave velocities (Vs) under continents, especially under cratons, are extremely fast at 100-200 km depth, which is difficult to explain by low temperatures or high Mg#. Alternatively, delaminated eclogitic lower continental crust has been proposed to account for these fast seismic anomalies. However, the thermoelastic properties of jadeite which constitutes up to 60-80 mol% of clinopyroxene in the potentially delaminated lower continental crust are not well constrained. In this study, we measured the single-crystal elasticity of jadeite by Brillouin spectroscopy under simultaneous high pressure and temperature conditions for the first time. We found that the temperature dependence of Vs of jadeite is extremely small if not negligible. The seismic velocities of the potentially delaminated lower continental crusts were subsequently modeled and found to match the widely observed fast seismic anomalies under cratons between 100 and 200 km depth.
open_in_new
Abstract
NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.
open_in_new
Abstract
Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that take part in numerous interdependent steps. This complexity creates a large genetic space in which pathogenic mutations can occur. “Dead-end” ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on -path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin proteasome system. We identified ZNF574 as a key component of a novel quality control pathway, which we term the Ribosome Assembly Surveillance Pathway (RASP). Loss of ZNF574 results in the accumulation of faulty biogenesis intermediates that interfere with global ribosome production, further emphasizing the role of RASP in protein homeostasis and cellular health.
open_in_new
Abstract
The first JWST spectroscopy of the luminous galaxy GN-z11 simultaneously established its redshift at z = 10.6 and revealed a rest-ultraviolet spectrum dominated by signatures of highly ionized nitrogen, which has so far defied clear interpretation. We present a reappraisal of this spectrum in the context of both detailed nebular modeling and nearby metal-poor reference galaxies. The N iv] emission enables the first nebular density measurement in an apparently predominantly star-forming galaxy at z > 10, revealing evidence for extremely high densities n(e) greater than or similar to 10(5) cm(-3). With a suite of photoionization models, we establish that regardless of the ionization mechanism and accounting for depletion and this density enhancement, gas substantially enriched in nitrogen ([N/O] = +0.52 assuming the nebular emission is dominated by star formation) is required to reproduce the observed lines. We compare the GN-z11 spectrum to local UV databases and highlight a unique nearby galaxy, Mrk 996, where a high concentration of Wolf-Rayet stars and their CNO-processed ejecta produce a UV spectrum remarkably similar in some respects to that of GN-z11 and the Sunburst Arc. Collating this evidence in the context of Galactic stellar abundances, we suggest that the peculiar nitrogenic features prominent in GN-z11 may be a unique signature of intense and densely clustered star formation in the evolutionary chain of the present-day globular clusters, consistent with in situ early enrichment with nuclear-processed stellar ejecta on a massive scale. Combined with insight from local galaxies, these and future JWST data open a powerful new window into the physical conditions of star formation and chemical enrichment at the highest redshifts.
open_in_new
Abstract
Nearly a decade ago, we began to see indications that reionization-era galaxies power hard radiation fields rarely seen at lower redshift. Most striking were detections of nebular C IV emission in what appeared to be typical low-mass galaxies, requiring an ample supply of 48 eV photons to triply ionize carbon. We have obtained deep JWST/NIRSpec R = 1000 spectroscopy of the two z > 6 C IV-emitting galaxies known prior to JWST. Here, we present a rest-UV to optical spectrum of one of these two systems, the multiply-imaged z = 6.1 lensed galaxy RXCJ2248-ID. NIRCam imaging reveals two compact (<22 pc) clumps separated by 220 pc, with one comprising a dense concentration of massive stars (>10 400 M-circle dot yr(-1) kpc(-2)) formed in a recent burst. We stack spectra of 3 images of the galaxy (J = 24.8-25.9), yielding a very deep spectrum providing a high-S/N template of strong emission line sources at z > 6. The spectrum reveals narrow high-ionization lines (He II, C IV, N IV]) with line ratios consistent with powering by massive stars. The rest-optical spectrum is dominated by very strong emission lines ([O III] EW = 2800 angstrom), albeit with weak emission from low-ionization transitions ([O III]/[O II] = 184). The electron density is found to be very high (6.4-31.0 x 10(4) cm(-3)) based on three UV transitions. The ionized gas is metal poor (12+log(O/H)=7.43(-0.09)(+0.17)), yet highly enriched in nitrogen (log(N/O)=-0.39(-0.10)(+0.11)). The spectrum appears broadly similar to that of GNz11 at z = 10.6, without showing the same AGN signatures. We suggest that the hard radiation field and rapid nitrogen enrichment may be a short-lived phase that many z > 6 galaxies go through as they undergo strong bursts of star formation. We comment on the potential link of such spectra to globular cluster formation.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • Current page 57
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025