Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Ultrahigh-temperature-pressure experiments are crucial for understanding the physical and chemical properties of matter. The recent development of boron-doped diamond (BDD) heaters has made such melting experiments possible in large-volume presses. However, estimates of temperatures above 2600 K and of the temperature distributions inside BDD heaters are not well constrained, owing to the lack of a suitable thermometer. Here, we establish a three-dimensional finite element model as a virtual thermometer to estimate the temperature and temperature field above 2600 K. The advantage of this virtual thermometer over those proposed in previous studies is that it considers both alternating and direct current heating modes, the actual sizes of cell assemblies after compression, the effects of the electrode, thermocouple and anvil, and the heat dissipation by the pressure-transmitting medium. The virtual thermometer reproduces the power-temperature relationships of ultrahigh-temperature-pressure experiments below 2600 K at press loads of 2.8-7.9 MN (similar to 19 to 28 GPa) within experimental uncertainties. The temperatures above 2600 K predicted by our virtual thermometer are within the uncertainty of those extrapolated from power-temperature relationships below 2600 K. Furthermore, our model shows that the temperature distribution inside a BDD heater (19-26 K/mm along the radial direction and <83 K/mm along the longitudinal direction) is more homogeneous than those inside conventional heaters such as graphite or LaCrO3 heaters (100-200 K/mm). Our study thus provides a reliable virtual thermometer for ultrahigh-temperature experiments using BDD heaters in Earth and material sciences.
open_in_new
Abstract
A key challenge in materials discovery is to find high-temperature superconductors. Hydrogen and hydride materials have long been considered promising materials displaying conventional phonon-mediated superconductivity. However, the high pressures required to stabilize these materials have restricted their application. Here, we present results from high-throughput computation, considering a wide range of high-symmetry ternary hydrides from across the periodic table at ambient pressure. This large composition space is then reduced by considering thermodynamic, dynamic, and magnetic stability before direct estimations of the superconducting critical temperature. This approach has revealed a metastable ambient-pressure hydride superconductor, Mg_{2}IrH_{6}, with a predicted critical temperature of 160K, comparable to the highest temperature superconducting cuprates. We propose a synthesis route via a structurally related insulator, Mg_{2}IrH_{7}, which is thermodynamically stable above 15GPa, and discuss the potential challenges in doing so.
open_in_new
Abstract
Perovskite nanocrystals have attracted much attention in the last ten years due to their different applications, especially in the photovoltaic domain and LED performance. In this large family of perovskite nanocrystals, CsPbBr3 nanocrystals are attractive nanomaterials because they are good candidates for obtaining green emissions and exploring new synthesis routes. In this context, controlling the nanometric scale's morphology, particularly the size and monodispersity, is fundamental for exploring their photophysical properties and final applications. Currently, the nanometric size of nanocrystals is ensured by the presence of oleic acid and oleylamine molecules, in using Hot Injection (HI) or ligand-assisted reprecipitation (LARP) methods. If oleic acid plays a fundamental role, oleylamine can be easily substituted by other amino molecules, opening the way for the functionalization of CsPbBr3 nanocrystals and the obtention of new hybrid perovskite nanocrystal families. In this article, we describe the synthesis, by soft chemistry, of a new family of hybrid organic-inorganic CsPbBr3 nanocrystals, functionalized by aryl-alkylamine (AAA) molecules, through the modified LARP method. We highlight the mechanism for cutting submicron crystals into nanocrystals, using aryl-alkylamine molecules like scissors. The impact of these amino molecules on the final nanocrystals leads to different nanocrystal morphologies (nanocubes, nanosheets, or nanorods) and structures (monoclinic, rhombohedral, or tetragonal). In addition, this modified LARP method highlights, under certain experimental conditions, an unexpected formation of PbO ribbons.
open_in_new
Abstract
We developed a new approach for combined analysis of calcium (Ca2+) handling and beating forces in contractile cardiomyocytes. We employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from dilated cardiomyopathy (DCM) patients carrying an inherited mutation in the sarcomeric protein troponin T (TnT), and isogenic TnT-KO iPSC-CMs generated via CRISPR/Cas9 gene editing. In these cells, Ca2+ handling as well as beating forces and-rates using single-cell atomic force microscopy (AFM) were assessed. We report impaired Ca2+ handling and reduced contractile force in DCM iPSC-CMs compared to healthy WT controls. TnT-KO iPSC-CMs display no contractile force or Ca2+ transients but generate Ca2+ sparks. We apply our analysis strategy to Ca2+ traces and AFM deflection recordings to reveal maximum rising rate, decay time, and duration of contraction with a multi-step background correction. Our method provides adaptive computing of signal peaks for different Ca2+ flux or force levels in iPSC-CMs, as well as analysis of Ca2+ sparks. Moreover, we report long-term measurements of contractile force dynamics on human iPSC-CMs. This approach enables deeper and more accurate profiling of disease-specific differences in cardiomyocyte contraction profiles using patient-derived iPSC-CMs.
open_in_new
Abstract
Previous attempts have been made to characterize the atmospheres of directly imaged planets at low resolution (R similar to 10-100 s), but the presence of clouds has often led to degeneracies in the retrieved atmospheric abundances with cloud opacity and temperature structure that bias retrieved compositions. In this study, we perform retrievals on the ultrayoung (less than or similar to 5 Myr) directly imaged planet ROXs 42B b with both a downsampled low-resolution JHK-band spectrum from Gemini/NIFS and Keck/OSIRIS, and a high-resolution K-band spectrum from pre-upgrade Keck/NIRSPAO. Using the atmospheric retrieval framework of petitRADTRANS, we analyze both data sets individually and combined. We additionally fit for the stellar abundances and other physical properties of the host stars, a young M spectral type binary, using the SPHINX model grid. We find that the measured C/O, 0.50 +/- 0.05, and metallicity, [Fe/H] = -0.67 +/- 0.35, for ROXs 42B b from our high-resolution spectrum agree with those of its host stars within 1 sigma. The retrieved parameters from the high-resolution spectrum are also independent of our choice of cloud model. In contrast, the retrieved parameters from the low-resolution spectrum show strong degeneracies between the clouds and the retrieved metallicity and temperature structure. When we retrieve both data sets together, we find that these degeneracies are reduced but not eliminated, and the final results remain highly sensitive to cloud modeling choices. We conclude that high-resolution spectroscopy offers the most promising path for reliably determining atmospheric compositions of directly imaged companions independent of their cloud properties.
open_in_new
Abstract
Molecular emission is used to investigate both the physical and chemical properties of protoplanetary disks. Therefore, to derive disk properties accurately, we need a thorough understanding of the behavior of the molecular probes upon which we rely. Here we investigate how the molecular line emission of N2H+, HCO+, HCN, and C18O compare to other measured quantities in a set of 20 protoplanetary disks. Overall, we find positive correlations between multiple line fluxes and the disk dust mass and radius. We also generally find strong positive correlations between the line fluxes of different molecular species. However, some disks do show noticeable differences in the relative fluxes of N2H+, HCO+, HCN, and C18O. These differences occur even within a single star-forming region. This results in a potentially large range of different disk masses and chemical compositions for systems of similar age and birth environment. While we make preliminary comparisons of molecular fluxes across different star-forming regions, more complete and uniform samples are needed in the future to search for trends with birth environment or age.
open_in_new
Abstract
The chemical composition of an extrasolar planet is fundamental to its formation, evolution, and habitability. In this study, we explore a new way to measure the chemical composition of the building blocks of extrasolar planets by measuring the gas composition of the disrupted planetesimals around white dwarf stars. As a first attempt, we used the photoionization code Cloudy to model the circumstellar gas emission around white dwarf Gaia J0611-6931 under some simplified assumptions. We found that most of the emission lines are saturated, and the line ratios approach the ratios of thermal emission; therefore, only lower limits to the number density can be derived. Silicon is the best-constrained element in the circumstellar gas, and we derived a lower limit of 10(10.3) cm(-3). In addition, we placed a lower limit on the total amount of gas to be 1.8 x 10(19) g. Further study is needed to better constrain the parameters of the gas disk and connect it to other white dwarfs with circumstellar gas absorption.
open_in_new
Abstract
Seismic and mineralogical studies have suggested regions at Earth's core-mantle boundary may be highly enriched in FeO, reported to exhibit metallic behavior at extreme pressure-temperature (P-T) conditions. However, underlying electronic processes in FeO remain poorly understood. Here we explore the electronic structure of B1-FeO at extreme conditions with large-scale theoretical modeling using state-of-the-art embedded dynamical mean field theory (eDMFT). Fine sampling of the phase diagram reveals that, instead of sharp metallization, compression of FeO at high temperatures induces a gradual orbitally selective insulator-metal transition. Specifically, at P-T conditions of the lower mantle, FeO exists in an intermediate quantum critical state, characteristic of strongly correlated electronic matter. Transport in this regime, distinct from insulating or metallic behavior, is marked by incoherent diffusion of electrons in the conducting t2g orbital and a band gap in the eg orbital, resulting in moderate electrical conductivity (~105 S/m) with modest P-T dependence as observed in experiments. Enrichment of solid FeO can thus provide a unifying explanation for independent observations of low seismic velocities and elevated electrical conductivities in heterogeneities at Earth's mantle base.
open_in_new
Abstract
Context. A spatially resoved circumstellar disk spectrum and composition can provide valuable insights into the bulk composition of forming planets and into the mineralogical signatures that emerge during and after planet formation.
open_in_new
Abstract
Supermassive black hole (SMBH) masses can be measured by observing their dynamical effects on tracers, such as molecular gas. We present high angular resolution Atacama Large Millimeter/submillimeter Array observations of the (CO)-C-12(2-1) line emission of the early-type galaxies (ETGs) NGC 1684 and NGC 0997, obtained as part of the MASSIVE survey, a volume-limited integral-field spectroscopic study of the most massive local ETGs. NGC 1684 has a regularly rotating central molecular gas disc, with a spatial extent of approximate to 6 arcsec (approximate to 1.8 kpc) in radius and a central hole slightly larger than the expected SMBH sphere of influence. We forward model the data cube in a Bayesian framework with the Kinematic Molecular Simulation (KinMS) code and infer a SMBH mass of $1.40<^>{+0.44}_{-0.39}\times 10<^>9$ M-circle dot (3 sigma confidence interval) and an F110W-filter stellar mass-to-light ratio of (2.50 +/- 0.05) M-circle dot/L-circle dot,L- F110W. NGC 0997 has a regularly rotating central molecular gas disc, with a spatial extent of approximate to 5 arcsec (approximate to 2.2 kpc) in radius and a partially filled central hole much larger than the expected SMBH sphere of influence, thus preventing a robust SMBH mass determination. With the same modelling method, we nevertheless constrain the SMBH mass to be in the range 4.0 x 10(7)-1.8 x 10(9) M-circle dot and the F160W-filter stellar mass-to-light ratio to be (1.52 +/- 0.11) M-circle dot/L-circle dot,L- F160W. Both SMBH masses are consistent with the SMBH mass-stellar velocity dispersion (M-BH-sigma(e)) relation, suggesting that the overmassive SMBHs present in other very massive ETGs are fairly uncommon.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Current page 56
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025