Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.
View Full Publication open_in_new
Abstract
We collect a sample of 42 Type Ia supernovae (SNe Ia) with Swift UV photometry and well-measured early time light-curve rises and find that 2002es-like and 2003fg-like SNe Ia have different prepeak UV color evolutions compared to normal SNe Ia and other spectroscopic subtypes. Specifically, 2002es-like and 2003fg-like SNe Ia are cleanly separated from other SNe Ia subtypes by UVM2 - UVW1 greater than or similar to 1.0 mag at t = - 10 days relative to B-band maximum. Furthermore, the SNe Ia that exhibit nonmonotonic bumps in their rising light curves, to date, consist solely of 2002es-like and 2003fg-like SNe Ia. We also find that SNe Ia with two-component power-law rises are more luminous than SNe Ia with single-component power-law rises at prepeak epochs. Given the similar UV colors, along with other observational similarities, we discuss a possible progenitor scenario that places 2002es-like and 2003fg-like SNe Ia along a continuum and may explain the unique UV colors, early time bumps, and other observational similarities between these objects. Ultimately, further observations of both subtypes, especially in the near-infrared, are critical for constraining models of these peculiar thermonuclear explosions.
View Full Publication open_in_new
Abstract
X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and similar to 3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of similar to 1 % at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.
View Full Publication open_in_new
Abstract
Data exploration, usually the first step in data analysis, is a useful method to tackle challenges caused by big geoscience data. It conducts quick analysis of data, investigates the patterns, and generates/refines research questions to guide advanced statistics and machine learning algorithms. The background of this work is the open mineral data provided by several sources, and the focus is different types of associations in mineral properties and occurrences. Researchers in mineralogy have been applying different techniques for exploring such associations. Although the explored associations can lead to new scientific insights that contribute to crystallography, mineralogy, and geochemistry, the exploration process is often daunting due to the wide range and complexity of factors involved. In this study, our purpose is implementing a visualization tool based on the adjacency matrix for a variety of datasets and testing its utility for quick exploration of association patterns in mineral data. Algorithms, software packages, and use cases have been developed to process a variety of mineral data. The results demonstrate the efficiency of adjacency matrix in real-world usage. All the developed works of this study are open source and open access. (c) 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
View Full Publication open_in_new
Abstract
The aluminous calcium-ferrite type phase (CF) and new aluminous phase (NAL) are thought to hold the excess alumina produced by the decomposition of garnet in MORB compositions in the lower mantle. The respective stabilities of CF and NAL in the nepheline-spinel binary (NaAlSiO4-MgAl2O4 ) are well established. However with the addition of further components the phase relations at lower mantle conditions remain unclear. Here we investigate a range of compositions around the nepheline apex of the nepheline-kalsilite-spinel compositional join (NaAlSiO4-KAlSiO4-MgAl2O4) at 28-78 GPa and 2000 K. Our experiments indicate that even small amounts of a kalsilite (KAlSiO4) component dramatically impact phase relations. We find NAL to be stable up to at least 71 GPa in potassium-bearing compositions. This demonstrates the stabilizing effect of potassium on NAL, because NAL is not observed at pressures above 48 GPa on the nepheline-spinel binary. We also observe a broadening of the CF stability field to incorporate larger amounts of potassium with increasing pressure. For pressures below 50 GPa only minor amounts (<0.011(1)K/K+Na+Mg) of potassium are soluble in CF, whereas at 68 GPa, we find a solubility in CF of at least 0.088(3)K/K+Na+Mg . This indicates that CF and NAL are suitable hosts of the alkali content of MORB compositions at lower mantle conditions. For sedimentary compositions at lower mantle pressures, we expect K-Hollandite to be stable in addition to CF and NAL for pressures of 28-48 GPa, based on our simplified compositions.
View Full Publication open_in_new
Abstract
The relative roles of protoplanetary differentiation versus late accretion in establishing Earth's life-essential volatile element inventory are being hotly debated. To address this issue, we employ first-principles calculations to investigate nitrogen (N) isotope fractionation during Earth's accretion and differentiation. We find that segregation of an iron core would enrich heavy N isotopes in the residual silicate, while evaporation within a H2-dominated nebular gas produces an enrichment of light N isotope in the planetesimals. The combined effect of early planetesimal evaporation followed by core formation enriches the bulk silicate Earth in light N isotopes. If Earth is comprised primarily of enstatite-chondrite-like material, as indicated by other isotope systems, then late accretion of carbonaceous-chondrite-like material must contribute~30-100% of the N budget in present-day bulk silicate Earth. However, mass balance using N isotope constraints shows that the late veneer contributes only a limited amount of other volatile elements (e.g., H, S, and C) to Earth.
View Full Publication open_in_new
Abstract
Cobalt pollution is harmful to both the aquatic ecosystem and human health. As the primary producer of aquatic ecosystems in hypersaline environments, unicellular planktonic Dunaliella microalgae is considered to be a low-energy and eco-friendly biosorbent that removes excess cobalt and enhances the vitality of coastal and marine ecosystems. In this study, we found that the halotolerant microalga named Dunaliella sp. FACHB-558 could grow under a salinity condition with 0.5-4.5 M NaCl. A phylogenetic analysis based on the rbcL gene revealed that Dunaliella sp. FACHB-558 is a close relative of Dunaliella primolecta TS-3. At lab-scale culture, Dunaliella sp. FACHB-558 exhibited high tolerance to heavy metal stresses, including cobalt, nickel, and cadmium. Treatment with 60 mu M cobalt delayed its stationary phase but ultimately led to a higher population density. Furthermore, Dunaliella sp. FACHB-558 has the ability to adsorb the cobalt ions in the aquatic environment, which was evidenced by the decreased amount of cobalt in the culture medium. In addition, the tolerance of Dunaliella sp. FACHB-558 to cobalt stress was correlated with enhanced nitric oxide content and peroxidase activity. The autophagy inhibitor 3-MA enhanced nitric oxide burst, increased peroxidase activity, and accelerated the bioremoval of cobalt, suggesting that the autophagy pathway played a negative role in response to cobalt stress in Dunaliella sp. FACHB-558. In summary, our study identified a novel microalga possessing high cobalt tolerance and provided a promising natural biosorbent for the research and application of heavy metal bioremediation technology.
View Full Publication open_in_new
Abstract
Data science education provides tremendous opportunities but remains inaccessible to many communities. Increasing the accessibility of data science to these communities not only benefits the individuals entering data science, but also increases the field's innovation and potential impact as a whole. Education is the most scalable solution to meet these needs, but many data science educators lack formal training in education. Our group has led education efforts for a variety of audiences: from professional scientists to high school students to lay audiences. These experiences have helped form our teaching philosophy which we have summarized into three main ideals: 1) motivation, 2) inclusivity, and 3) realism. 20 we also aim to iteratively update our teaching approaches and curriculum as we find ways to better reach these ideals. In this manuscript we discuss these ideals as well practical ideas for how to implement these philosophies in the classroom.
View Full Publication open_in_new
Abstract
Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that take part in numerous interdependent steps. This complexity creates a large genetic space in which pathogenic mutations can occur. Dead-end ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin proteasome system. We identified ZNF574 as a key component of a novel quality control pathway, which we term the Ribosome Assembly Surveillance Pathway (RASP). Loss of ZNF574 results in the accumulation of faulty biogenesis intermediates that interfere with global ribosome production, further emphasizing the role of RASP in protein homeostasis and cellular health.
View Full Publication open_in_new
Abstract
Micrometeorites are estimated to represent the main part of the present flux of extraterrestrial matter found on the Earth's surface and provide valuable samples to probe the interplanetary medium. Here, we describe large and representative collections of micrometeorites currently available to the scientific community. These include Antarctic collections from surface ice and snow, as well as glacial sediments from the eroded top of nunataks-summits outcropping from the icesheet-and moraines. Collections extracted from deep-sea sediments (DSS) produced a large number of micrometeorites, in particular, iron-rich cosmic spherules that are rarer in other collections. Collections from the old and stable surface of the Atacama Desert show that finding large numbers of micrometeorites is not restricted to polar regions or DSS. The advent of rooftop collections marks an important step into involving citizen science in the study of micrometeorites, as well as providing potential sampling locations over all latitudes to explore the modern flux. We explore their strengths of the collections to address specific scientific questions and their potential weaknesses. The future of micrometeorite research will involve the finding of large fossil micrometeorite collections and benefit from recent advances in sampling cosmic dust directly from the air. This article is part of the theme issue 'Dust in the Solar System and beyond'.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Current page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025