Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The relative roles of protoplanetary differentiation versus late accretion in establishing Earth's life-essential volatile element inventory are being hotly debated. To address this issue, we employ first-principles calculations to investigate nitrogen (N) isotope fractionation during Earth's accretion and differentiation. We find that segregation of an iron core would enrich heavy N isotopes in the residual silicate, while evaporation within a H2-dominated nebular gas produces an enrichment of light N isotope in the planetesimals. The combined effect of early planetesimal evaporation followed by core formation enriches the bulk silicate Earth in light N isotopes. If Earth is comprised primarily of enstatite-chondrite-like material, as indicated by other isotope systems, then late accretion of carbonaceous-chondrite-like material must contribute~30-100% of the N budget in present-day bulk silicate Earth. However, mass balance using N isotope constraints shows that the late veneer contributes only a limited amount of other volatile elements (e.g., H, S, and C) to Earth.
open_in_new
Abstract
Cobalt pollution is harmful to both the aquatic ecosystem and human health. As the primary producer of aquatic ecosystems in hypersaline environments, unicellular planktonic Dunaliella microalgae is considered to be a low-energy and eco-friendly biosorbent that removes excess cobalt and enhances the vitality of coastal and marine ecosystems. In this study, we found that the halotolerant microalga named Dunaliella sp. FACHB-558 could grow under a salinity condition with 0.5-4.5 M NaCl. A phylogenetic analysis based on the rbcL gene revealed that Dunaliella sp. FACHB-558 is a close relative of Dunaliella primolecta TS-3. At lab-scale culture, Dunaliella sp. FACHB-558 exhibited high tolerance to heavy metal stresses, including cobalt, nickel, and cadmium. Treatment with 60 mu M cobalt delayed its stationary phase but ultimately led to a higher population density. Furthermore, Dunaliella sp. FACHB-558 has the ability to adsorb the cobalt ions in the aquatic environment, which was evidenced by the decreased amount of cobalt in the culture medium. In addition, the tolerance of Dunaliella sp. FACHB-558 to cobalt stress was correlated with enhanced nitric oxide content and peroxidase activity. The autophagy inhibitor 3-MA enhanced nitric oxide burst, increased peroxidase activity, and accelerated the bioremoval of cobalt, suggesting that the autophagy pathway played a negative role in response to cobalt stress in Dunaliella sp. FACHB-558. In summary, our study identified a novel microalga possessing high cobalt tolerance and provided a promising natural biosorbent for the research and application of heavy metal bioremediation technology.
open_in_new
Abstract
Data science education provides tremendous opportunities but remains inaccessible to many communities. Increasing the accessibility of data science to these communities not only benefits the individuals entering data science, but also increases the field's innovation and potential impact as a whole. Education is the most scalable solution to meet these needs, but many data science educators lack formal training in education. Our group has led education efforts for a variety of audiences: from professional scientists to high school students to lay audiences. These experiences have helped form our teaching philosophy which we have summarized into three main ideals: 1) motivation, 2) inclusivity, and 3) realism. 20 we also aim to iteratively update our teaching approaches and curriculum as we find ways to better reach these ideals. In this manuscript we discuss these ideals as well practical ideas for how to implement these philosophies in the classroom.
open_in_new
Abstract
Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that take part in numerous interdependent steps. This complexity creates a large genetic space in which pathogenic mutations can occur. Dead-end ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin proteasome system. We identified ZNF574 as a key component of a novel quality control pathway, which we term the Ribosome Assembly Surveillance Pathway (RASP). Loss of ZNF574 results in the accumulation of faulty biogenesis intermediates that interfere with global ribosome production, further emphasizing the role of RASP in protein homeostasis and cellular health.
open_in_new
Abstract
Micrometeorites are estimated to represent the main part of the present flux of extraterrestrial matter found on the Earth's surface and provide valuable samples to probe the interplanetary medium. Here, we describe large and representative collections of micrometeorites currently available to the scientific community. These include Antarctic collections from surface ice and snow, as well as glacial sediments from the eroded top of nunataks-summits outcropping from the icesheet-and moraines. Collections extracted from deep-sea sediments (DSS) produced a large number of micrometeorites, in particular, iron-rich cosmic spherules that are rarer in other collections. Collections from the old and stable surface of the Atacama Desert show that finding large numbers of micrometeorites is not restricted to polar regions or DSS. The advent of rooftop collections marks an important step into involving citizen science in the study of micrometeorites, as well as providing potential sampling locations over all latitudes to explore the modern flux. We explore their strengths of the collections to address specific scientific questions and their potential weaknesses. The future of micrometeorite research will involve the finding of large fossil micrometeorite collections and benefit from recent advances in sampling cosmic dust directly from the air. This article is part of the theme issue 'Dust in the Solar System and beyond'.
open_in_new
Abstract
We present the Citizen Science program Active Asteroids and describe discoveries stemming from our ongoing project. Our NASA Partner program is hosted on the Zooniverse online platform and launched on 2021 August 31, with the goal of engaging the community in the search for active asteroids-asteroids with comet-like tails or comae. We also set out to identify other unusual active solar system objects, such as active Centaurs, active quasi-Hilda asteroids (QHAs), and Jupiter-family comets (JFCs). Active objects are rare in large part because they are difficult to identify, so we ask volunteers to assist us in searching for active bodies in our collection of millions of images of known minor planets. We produced these cutout images with our project pipeline that makes use of publicly available Dark Energy Camera data. Since the project launch, roughly 8300 volunteers have scrutinized some 430,000 images to great effect, which we describe in this work. In total, we have identified previously unknown activity on 15 asteroids, plus one Centaur, that were thought to be asteroidal (i.e., inactive). Of the asteroids, we classify four as active QHAs, seven as JFCs, and four as active asteroids, consisting of one main-belt comet (MBC) and three MBC candidates. We also include our findings concerning known active objects that our program facilitated, an unanticipated avenue of scientific discovery. These include discovering activity occurring during an orbital epoch for which objects were not known to be active, and the reclassification of objects based on our dynamical analyses.
open_in_new
Abstract
Variations in the Dolivo-Dobrovol'sky symmetry index for minerals through time reveal several factors that influence the emergence of crystalline symmetry in natural processes. Of special interest in this regard are the numerous paragenetic modes-different processes of mineral genesis that reflect changes in physical, chemical, and ultimately biological environments that foster the emergence of new mineral species. Here, we consider the roles of hydrogen content, rarity, formation temperature and pressure, and age on the average symmetry of minerals from 57 different modes of formation (i.e., paragenetic modes). We find four significant trends in the average mineral symmetry index for all minerals in each paragenetic mode: specifically, this average index is (1) lower for minerals with greater hydrogen content; (2) greater for minerals formed at higher pressure; (3) lower for minerals of greater rarity; and (4) greater for older paragenetic modes. These findings elucidate some of the intricate relationships among paragenetic modes, average mineral attributes, and the Dolivo-Dobrovol'sky symmetry index, providing insights into the geological processes governing mineral formation.
open_in_new
Abstract
The solidification of a deep magma ocean occurred early in Earth's history. Although the initial amount of H2O in Earth's magma ocean is predicted to be low (e.g., <3000 ppm), as an incompatible element it becomes highly enriched (e.g. >10 wt%) in the final few percent of crystallization. In order to understand how a hydrous magma ocean would crystallize at the top of the lower mantle, we determined liquidus phase relations in the MgO-FeO-CaO-Al2O3-SiO2-H2O system at 24 GPa. We find that the bridgmanite (brg) + stishovite (st) + melt and bridgmanite (brg) + ferropericlase (fp) + melt cotectic boundary curves trend to Mg-rich melt compositions with decreasing temperature and extend to very high H2O contents (similar to 80 mol% H2O). The brg+st+melt curve is a subtraction curve at < similar to 18 mol% H2O and a reaction curve at higher H2O contents, whereas the brg+fp+melt is a subtraction curve throughout its length. The density of melts along the two cotectics leads to neutral buoyancy with respect to shallow lower mantle and transition zone minerals at H2O contents up to similar to 25 mol%. A transient melt-rich layer can form at the top of the lower mantle during late-stage crystallization in a mushy magma ocean when melt percolation dominates. When crystallization exceeds similar to 98%, hydrous melts (>25 mol% H2O) become buoyant and can percolate into and hydrate the mantle transition zone.
open_in_new
Abstract
With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30-50m range. We present a 30m culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300K equations of state fit to our P-V data collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to>4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.
open_in_new
Abstract
The tip of the red giant branch (TRGB) based distance method in the I band is one of the most efficient and precise techniques for measuring distances to nearby galaxies (D less than or similar to 15 Mpc). The TRGB in the near-infrared (NIR) is 1-2 mag brighter relative to the I band, and has the potential to expand the range over which distance measurements to nearby galaxies are feasible. Using Hubble Space Telescope (HST) imaging of 12 fields in eight nearby galaxies, we determine color-based corrections and zero-points of the TRGB in the Wide Field Camera 3 IR (WFC3/IR) F110W and F160W filters. First, we measure TRGB distances in the I band equivalent Advanced Camera System (ACS) F814W filter from resolved stellar populations with the HST. The TRGB in the ACS F814W filter is used for our distance anchor and to place the WFC3/IR magnitudes on an absolute scale. We then determine the color dependence (a proxy for metallicity/age) and zero-point of the NIR TRGB from photometry of WFC3/IR fields that overlap with the ACS fields. The new calibration is accurate to similar to 1% in distance relative to the F814W TRGB. Validating the accuracy of the calibrations, we find that the distance modulus for each field using the NIR TRGB calibration agrees with the distance modulus of the same field as determined from the F814W TRGB. This is a JWST preparatory program, and the work done here will directly inform our approach to calibrating the TRGB in JWST NIRCam and NIRISS photometric filters.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Current page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025