Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

    This 500-million-year-old trilobite from Utah has an organic-rich carapace that preserves a record of the original biomolecules. Credit: Robert Hazen.
    Breaking News
    November 17, 2025

    Chemical evidence of ancient life detected in 3.3-billion-year-old rocks

    Joe Berry and Lorenzo Rosa
    Breaking News
    November 14, 2025

    Two Carnegie Scientists Named 2025 Highly Cited Researchers

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Devaki Bhaya
March 20, 2024
Spotlight

Women of Influence: Devaki Bhaya

Weinberger Smiling
March 14, 2024
Spotlight

Women of Influence: Alycia Weinberger

Johanna Portrait
March 14, 2024
Spotlight

Women of Influence: Johanna Teske

Stephanie Hampton gearing up to do fieldwork
March 14, 2024
Spotlight

Women of Influence: Stephanie Hampton

Anat shahar portrait, green background
March 14, 2024
Spotlight

Women of Influence: Anat Shahar

A shot of the Mily Way from Las Campanas with the new Carnegie Science logo on top
March 19, 2024
Organizational News

Bold. Boundless. Wondrous. Carnegie Science launches new visual identity

March 21, 2024
Feature Story

Carnegie Science astronomers lead three new JWST initiatives

March 21, 2024
Feature Story

Carnegie Science's jewel in the Southern Hemisphere: Las Campanas Observatory

Abstract
In this study, we conduct extensive high-pressure experiments to investigate phase stability in the cobalt-nitrogen system. Through a combination of synthesis in a laser-heated diamond anvil cell, first-principles calculations, Raman spectroscopy, and single-crystal X-ray diffraction, we establish the stability fields of known high-pressure phases, hexagonal NiAs-type CoN, and marcasite-type CoN2 within the pressure range of 50-90 GPa. We synthesize and characterize previously unknown nitrides, Co3N2, Pnma-CoN and two polynitrides, CoN3 and CoN5, within the pressure range of 90-120 GPa. Both polynitrides exhibit novel types of polymeric nitrogen chains and networks. CoN3 feature branched-type nitrogen trimers (N3) and CoN5 show pi-bonded nitrogen chain. As the nitrogen content in the cobalt nitride increases, the CoN6 polyhedral frameworks transit from face-sharing (in CoN) to edge-sharing (in CoN2 and CoN3), and finally to isolated (in CoN5). Our study provides insights into the intricate interplay between structure evolution, bonding arrangements, and high-pressure synthesis in polynitrides, expanding the knowledge for the development of advanced energy materials
View Full Publication open_in_new
Abstract
Nitrogen represents an archetypal example of material exhibiting a pressure -driven transformation from molecular to polymeric state. Detailed investigations of such transformations are challenging because of a large kinetic barrier between molecular and polymeric structures, making the transformation largely dependent on kinetic stimuli. In the case of nitrogen, additional complications occur due to the rich polymorphism in the vicinity of the transition. Here, we report the observation of both molecular (theta) and black phosphorus (bp) polymeric phases, crystallized upon temperature quenching of fluid nitrogen to room temperature at 97-114 GPa. Synchrotron single -crystal x-ray diffraction, Raman spectroscopy, and first -principles theoretical calculations have been used for diagnostics of the phases and determination of their structure and stability. The structure of theta - N2 is determined as tetragonal, space group P42212-one of the phases previously predicted theoretically above 9.5 GPa but never recognized experimentally. Molecular theta - N2 is the most stable among molecular phases bordering the stability field of polymeric phases, partially settling a previously noted discrepancy between theory and experiment concerning the thermodynamic stability limit of molecular phases.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • Current page 60
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025