Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.
View Full Publication open_in_new
Abstract
Diagnosing land-atmosphere fluxes of carbon-dioxide (CO2) and methane (CH4) is essential for evaluating carbon-climate feedbacks. Greenhouse gas satellite missions aim to fill data gaps in regions like the humid tropics but obtain very few valid measurements due to cloud contamination. We examined data yields from the Orbiting Carbon Observatory alongside Sentinel-2 cloud statistics. We find that the main contribution to low data yields are frequent shallow cumulus clouds. In the Amazon, the success rate in obtaining valid measurements vary from 0.1% to 1.0%. By far the lowest yields occur in the wet season, consistent with Sentinel-2 cloud patterns. We find that increasing the spatial resolution of observations to similar to 200 m would increase yields by 2-3 orders of magnitude and allow regular measurements in the wet season. Thus, the key to effective tropical greenhouse gas observations lies in regularly acquiring high-spatial resolution data.
View Full Publication open_in_new
Abstract
The animal foregut is the first tissue to encounter ingested food, bacteria, and viruses. We characterized the adult Drosophila foregut using transcriptomics to better understand how it triages consumed items for digestion or immune response and manages resources. Cell types were assigned and validated using GFP- tagged and Gal4 reporter lines. Foregut- associated neuroendocrine cells play a major integrative role by coordinating gut activity with nutrition, the microbiome, and circadian cycles; some express clock genes. Multiple epithelial cell types comprise the proventriculus, the central foregut organ that secretes the peritrophic matrix (PM) lining the gut. Analyzing cell types synthesizing individual PM layers revealed abundant mucin production close to enterocytes, similar to the mammalian intestinal mucosa. The esophagus and salivary gland express secreted proteins likely to line the esophageal surface, some of which may generate a foregut commensal niche housing specific gut microbiome species. Overall, our results imply that the foregut coordinates dietary sensing, hormonal regulation, and immunity in a manner that has been conserved during animal evolution.
View Full Publication open_in_new
Abstract
We present a morphological study of the 17 lensed Ly alpha emitter (LAE) galaxies of the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly alpha EmitteR sYstems (BELLS GALLERY) sample. This analysis combines the magnification effect of strong galaxy-galaxy lensing with the high resolution of the Hubble Space Telescope to achieve a physical resolution of similar to 80 pc for this 2 < z < 3 LAE sample, allowing a detailed characterization of the LAE rest-frame ultraviolet continuum surface brightness profiles and substructure. We use lens-model reconstructions of the LAEs to identify and model individual clumps, which we subsequently use to constrain the parameters of a generative statistical model of the LAE population. Since the BELLS GALLERY sample is selected primarily on the basis of Ly alpha emission, the LAEs that we study here are likely to be directly comparable to those selected in wide-field, narrowband LAE surveys, in contrast with the lensed LAEs identified in cluster-lensing fields. We find an LAE clumpiness fraction of approximately 88%, which is significantly higher than that found in previous (non-lensing) studies. We find a well-resolved characteristic clump half-light radii of similar to 350 pc, a scale comparable to the largest H II regions seen in the local universe. This statistical characterization of LAE surface-brightness profiles will be incorporated into future lensing analyses using the BELLS GALLERY sample to constrain the incidence of dark-matter substructure in the foreground lensing galaxies.
View Full Publication open_in_new
Abstract
Chloroflexus sp. MS-CIW-1 was isolated from a phototrophic mat in Mushroom Spring, an alkaline hot spring in Yellowstone National Park, WY, USA. We report the draft genome of 4.8 Mb consisting of 6 contigs with 3755 protein-coding genes and a GC content of 54.45%.
View Full Publication open_in_new
Abstract
TOP assay data were used to identify PFAS contaminationsources based on visualizing a two-component PCA and similaritiesin chemical composition.Per- and polyfluoroalkylsubstances (PFASs) are a class of synthetic,organic chemicals that contaminate drinking water and natural ecosystems.PFAS source apportionment is challenging because there are many sources,and standard analytical methods quantify fewer than 100 of the thousandsof PFASs in commerce. The total oxidizable precursor (TOP) assay augmentsthe number of PFASs that can be quantified and is increasingly incorporatedinto routine site investigation. Here we examine the ability of theTOP assay to identify PFAS sources, including aqueous film-formingfoam (AFFF) impacted sites, municipal wastewater treatment plants(WWTPs), and municipal solid waste landfills in 145 samples from 46locations and three countries. The bootstrapped mean composition ofPFASs from each source was dominated by precursors, particularly insamples from WWTPs where precursors that form short-chain perfluoroalkylcarboxylates during the TOP assay were most common. Compared to whenTOP assay data were excluded, inclusion of TOP assay data in dimension-reducingalgorithms, such as principal component analysis (PCA), improved separationamong sources. We converted the PCA tool into a web application thatallows users to initiate PFAS source apportionment efforts on datafrom sites where contaminant sources are unknown.
View Full Publication open_in_new
Abstract
We present two transit observations of the similar to 870 K, 1.7 R circle plus super-Earth TOI-836b with JWST NIRSpec/G395H, resulting in a 2.8-5.2 mu m transmission spectrum. Using two different reduction pipelines, we obtain a median transit depth precision of 34 ppm for Visit 1 and 36 ppm for Visit 2, leading to a combined precision of 25 ppm in spectroscopic channels 30 pixels wide (similar to 0.02 mu m). We find that the transmission spectrum from both visits is well fit by a zero-sloped line, by fitting zero-sloped and sloped lines as well as step functions to our data. Combining both visits, we are able to rule out atmospheres with metallicities <250 times solar for an opaque pressure level of 0.1 bar, corresponding to mean molecular weights of less than or similar to 6 g mol-1. We therefore conclude that TOI-836b does not have an H2-dominated atmosphere, in possible contrast with its larger, exterior sibling planet, TOI-836 c. We recommend that future proposals to observe small planets exercise caution when requiring specific numbers of transits to rule out physical scenarios, particularly for high metallicities and planets around bright host stars, as PandExo predictions appear to be more optimistic than what the gains from additional transits implied by our data suggest.
View Full Publication open_in_new
Abstract
Climate change is increasing the frequency and severity of short-term (similar to 1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed similar to a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • Current page 61
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025