Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

    JWST image
    Colloquium

    Prof. Harley Katz (University of Chicago)

    The Spectral Revolution at Cosmic Dawn: Interpreting High-Redshift JWST Observations with Next-Generation Models

    February 10

    11:00am PST

    Lava exoplanet
    Seminar

    Kaustav Das (Caltech)

    TBD

    February 13

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    The dome of one of Las Campanas Observatories' twin Magellan telescopes in movement. Credit: Yuri Beletsky/Carnegie Science
    Breaking News
    December 31, 2026

    Instrumentation Keeps Carnegie Astronomers at the Cutting Edge

    Lori Willhite Headsot
    Breaking News
    February 03, 2026

    Lori Willhite brings EPL's mass spec lab into the future

    Jennifer Kasbohm & Andrea Giuliani
    Breaking News
    February 02, 2026

    Geochronology: Decoding Earth’s Past to Shape Its Future

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Warming, the most prominent aspect of global environmental change, already affects most ecosystems on Earth. In recent years, biologists have increasingly integrated the effects of warming into their models by capturing how temperature shapes their physiology, ecology, behavior, evolutionary adaptation and probability of extirpation/extinction. The more physiologically-grounded approaches to predicting ectotherms' responses use thermal performance curves (TPCs) obtained by measuring species performance (e.g. growth rate) under different temperatures. TPCs are typically measured while other factors are held constant at benign levels to 'isolate' the effects of temperature. Here we highlight that this practice paints a misleading picture because TPCs are functions of other factors, including global change stressors. We review evidence that resource limitation, pH, oxygen and CO2 concentration, salinity, water availability, parasites and mutualists, all influence TPC shape and thermal traits such as optimum temperature for growth. Evidence from a wide variety of organisms - phytoplankton, protists, plants, insects and fish - points towards such interactions increasing organisms' susceptibility to high temperatures (reducing it in the case of mutualists). Failing to account for these interactions is likely to lead to erroneous predictions of performance in nature and an underestimation of the risks of warming. We discuss the general patterns and possible consequences of such interactions for ecological communities. But importantly, interactions with TPCs share common features that we can learn from. Incorporating these interactions into population and community models should lead to deeper insights and more accurate predictions of species' performance in nature - as well as strategies for managing natural and agricultural ecosystems in the face of warming.
View Full Publication open_in_new
Mike Walter Speaking at Podium
December 28, 2022
Campus News

Looking back at 2022

Shaunna Morrison
December 28, 2022
Awards

Shaunna Morrison receives Minerals Young Investigator Award

Abstract
The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.
View Full Publication open_in_new
Abstract
The worldwide proliferation of harmful algal blooms (HABs) both in freshwater and marine ecosystems make understanding and predicting their occurrence urgent. Trait-based approaches, where the focus is on functional traits, have been successful in explaining community structure and dynamics in diverse ecosystems but have not been applied extensively to HABs. The existing trait compilations suggest that HAB taxa differ from non HAB taxa in key traits that determine their responses to major environmental drivers. Multi-trait comparisons between HAB-forming and other phytoplankton taxa, as well as within the HAB groups to characterize interspecific and intraspecific differences will help better define ecological niches of different HAB taxa, develop trait-based mechanistic models, and better identify environmental conditions that would likely lead to HABs. Building databases of HAB traits and using them in diverse statistical and mechanistic models will increase our ability to predict the HAB occurrence, composition, and severity under changing conditions, including the anthropogenic global change.
View Full Publication open_in_new
Abstract
We report the discovery of Specter, a disrupted ultrafaint dwarf galaxy revealed by the H3 Spectroscopic Survey. We detected this structure via a pair of comoving metal-poor stars at a distance of 12.5 kpc, and further characterized it with Gaia astrometry and follow-up spectroscopy. Specter is a 25 degrees x 1 degrees stream of stars that is entirely invisible until strict kinematic cuts are applied to remove the Galactic foreground. The spectroscopic members suggest a stellar age tau greater than or similar to 12 Gyr and a mean metallicity <[Fe/H]> = -1.84(-0.18)(+0.16), with a significant intrinsic metallicity dispersion sigma([Fe/H]) = 0.37(-0.13)(+0.21). We therefore argue that Specter is the disrupted remnant of an ancient dwarf galaxy. With an integrated luminosity M-v approximate to -2.6, Specter is by far the least-luminous dwarf galaxy stream known. We estimate that dozens of similar streams are lurking below the detection threshold of current search techniques, and conclude that spectroscopic surveys offer a novel means to identify extremely low surface brightness structures.
View Full Publication open_in_new
Ming Hao Postdoc 2022
December 21, 2022
Q&A

Ming Hao uncovers the secrets of the deep Earth through mineral physics

Lara Wagner stands at podium at EarthScope Reception
December 21, 2022
Awards

Carnegie’s Lara Wagner elected board chair of the newly founded EarthScope Consortium

Eric Edmund at poster session AGU 22
December 20, 2022
Campus News

AGU 2022 Post-Conference Recap

Abstract
Mercury has a compositionally diverse surface that was produced by different periods of igneous activity suggesting heterogeneous mantle sources. Understanding the structure of Mercury's mantle formed during the planet's magma ocean stage could help in developing a petrologic model for Mercury, and thus, understanding its dynamic history in the context of crustal petrogenesis. We present results of falling sphere viscometry experiments on late-stage Mercurian magma ocean analogue compositions conducted at the Advanced Photon Source, beamline 16-BM-B, Argonne National Laboratory. Owing to the presence of sulfur on the surface of Mercury, two compositions were tested, one with sulfur and one without. The liquids have viscosities of 0.6-3.9 (sulfur-bearing; 2.6-6.2 GPa) and 0.6-10.9 Pa center dot s (sulfur-free; 3.2-4.5 GPa) at temperatures of 1600-2000 degrees C. We present new viscosity models that enable extrapolation beyond the experimental conditions and evaluate grain growth and the potential for crystal entrainment in a cooling, convecting magma ocean. We consider scenarios with and without a graphite flotation crust, suggesting endmember outcomes for Mercury's mantle structure. With a graphite flotation crust, crystallization of the mantle would be fractional with negatively buoyant minerals sinking to form a stratified cumulate pile according to the crystallization sequence. Without a flotation crust, crystals may remain entrained in the convecting liquid during solidification, producing a homogeneous mantle. In the context of these endmember models, the surface could result from dynamical stirring or mixing of a mantle that was initially heterogeneous, or potentially from different extents of melting of a homogeneous mantle.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 252
  • Page 253
  • Page 254
  • Page 255
  • Current page 256
  • Page 257
  • Page 258
  • Page 259
  • Page 260
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026