Abstract
We report the discovery of Specter, a disrupted ultrafaint dwarf galaxy revealed by the H3 Spectroscopic Survey. We detected this structure via a pair of comoving metal-poor stars at a distance of 12.5 kpc, and further characterized it with Gaia astrometry and follow-up spectroscopy. Specter is a 25 degrees x 1 degrees stream of stars that is entirely invisible until strict kinematic cuts are applied to remove the Galactic foreground. The spectroscopic members suggest a stellar age tau greater than or similar to 12 Gyr and a mean metallicity <[Fe/H]> = -1.84(-0.18)(+0.16), with a significant intrinsic metallicity dispersion sigma([Fe/H]) = 0.37(-0.13)(+0.21). We therefore argue that Specter is the disrupted remnant of an ancient dwarf galaxy. With an integrated luminosity M-v approximate to -2.6, Specter is by far the least-luminous dwarf galaxy stream known. We estimate that dozens of similar streams are lurking below the detection threshold of current search techniques, and conclude that spectroscopic surveys offer a novel means to identify extremely low surface brightness structures.