Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

    JWST image
    Colloquium

    Prof. Harley Katz (University of Chicago)

    The Spectral Revolution at Cosmic Dawn: Interpreting High-Redshift JWST Observations with Next-Generation Models

    February 10

    11:00am PST

    Lava exoplanet
    Seminar

    Kaustav Das (Caltech)

    TBD

    February 13

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    The dome of one of Las Campanas Observatories' twin Magellan telescopes in movement. Credit: Yuri Beletsky/Carnegie Science
    Breaking News
    December 31, 2026

    Instrumentation Keeps Carnegie Astronomers at the Cutting Edge

    Lori Willhite Headsot
    Breaking News
    February 03, 2026

    Lori Willhite brings EPL's mass spec lab into the future

    Jennifer Kasbohm & Andrea Giuliani
    Breaking News
    February 02, 2026

    Geochronology: Decoding Earth’s Past to Shape Its Future

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Fe2P-type dioxides are significant both for geoscience and condensed-matter physics. For example, Fe2P-type SiO2 has been proposed to be one of the dominant components in the mantles of super-Earths and Fe2P-type TiO2 has been shown to have a large visible absorbance. Here we report the discovery of an Fe2P-type phase in a typical transition-metal dichalcogenide (TMD), TiTe2, using crystal structure prediction and first-principles calculations. Ambient layered TiTe2 will first transform to a monoclinic C2/m phase and then finally to the hexagonal Fe2P-type phase above 33 GPa. Fe2P-type TiTe2 is predicted to be metallic, contrasting with the semiconductivity of Fe2P-type TiO2. The same high-pressure phase (Fe2P type) appears both in transition-metal dioxides and TMDs, indicating that the stacking patterns of anions and cations play an increasingly important role in determining the high-pressure phase.
View Full Publication open_in_new
Kelis Portrait

Kelis Fuentes-Mendoza

Custodial Technician 

Fatima Isabel Escorcia Flores Portrait

Fatima Escorcia Flores

Custodial Technician 

Khristian Profile Pic

Khristian Stalyn

Custodial Technician 

David George in the lab in 1991
February 07, 2023
Campus News

In Memoriam: Former Carnegie research tech dies at 75

Youying Dong

Youying Dong

Graduate Student

Abstract
The intestines of animals are colonized by commensal microbes, which impact host development, health, and behavior. Precise quantification of colonization is essential for studying the complex interactions between host and microbe both to validate the microbial composition and study its effects. Drosophila melanogaster,which has a low native microbial diversity and is economical to rear with defined microbial composition, has emerged as a model organism for studying the gut microbiome. Analyzing the microbiome of an individual organism requires identification of which microbial species are present and quantification of their absolute abundance. This article presents a method for the analysis of a large number of individual fly microbiomes. The flies are prepared in 96-well plates, enabling the handling of a large number of samples at once. Microbial abundance is quantified by plating up to 96 whole fly homogenates on a single agar plate in an array of spots and then counting the colony forming units (CFUs) that grow in each spot. This plating system is paired with an automated CFU quantification platform, which incorporates photography of the plates, differentiation of fluorescent colonies, and automated counting of the colonies using an ImageJ plugin. Advantages are that (i) this method is sensitive enough to detect differences between treatments, (ii) the spot plating method is as accurate as traditional plating methods, and (iii) the automated counting process is accurate and faster than manual counting. The workflow presented here enables high-throughput quantification of CFUs in a large number of replicates and can be applied to other microbiology study systems including in vitro and other small animal models.
View Full Publication open_in_new
Abstract
Windthrows (trees uprooted and broken by winds) are common across the Amazon. They range in size from single trees to large gaps that lead to changes in forest dynamics, composition, structure, and carbon balance. Yet, the current understanding of the spatial variability of windthrows is limited. By integrating remote sensing data and geospatial analysis, we present the first study to examine the occurrence, area, and direction of windthrows and the control that environmental variables exert on them across the whole Amazon. Windthrows are more frequent and larger in the northwestern Amazon (Peru and Colombia), with the central Amazon (Brazil) being another hot spot of windthrows. The predominant direction of windthrows is westward. Rainfall, surface elevation, and soil characteristics explain the variability (20%-50%) of windthrows but their effects vary regionally. A better understanding of the spatial dynamics of windthrows will improve understanding of the functioning of Amazon forests.
View Full Publication open_in_new
Abstract
Crystal structures of minerals are defined by a specific atomic arrangement within the unit-cell, which follows the laws of symmetry specific to each crystal system. The causes for a mineral to crystallize in a given crystal system have been the subject of many studies showing their dependency on different formation conditions, such as the presence of aqueous fluids, biotic activity and many others. Different attempts have been made to quantify and interpret the information that we can gather from studying crystal symmetry and its distribution in the mineral kingdom. However, these methods are mostly outdated or at least not compatible for use on large datasets available today. Therefore, a revision of symmetry index calculation has been made in accordance with the growing understanding of mineral species and their characteristics. In the gathered data, we observe a gradual but significant decrease in crystal symmetry through the stages of mineral evolution, from the formation of the solar system to modern day. However, this decrease is neither uniform nor linear, which provides further implications for mineral evolution from the viewpoint of crystal symmetry. The temporal distribution of minerals based on the number of essential elements in their chemical formulae and their symmetry index has been calculated and compared to explore their behaviour. Minerals with four to eight essential elements have the lowest average symmetry index, while being the most abundant throughout all stages of mineral evolution. There are many open questions, including those pertaining to whether or not biological activity on Earth has influenced the observed decrease in mineral symmetry through time and whether or not the trajectory of planetary evolution of a geologically active body is one of decreasing mineral symmetry/increasing complexity.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 247
  • Page 248
  • Page 249
  • Page 250
  • Current page 251
  • Page 252
  • Page 253
  • Page 254
  • Page 255
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026