Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 16

    7:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The optimisation of synthetic and natural microbial communities has vast potential for emerging applications in medicine, agriculture and industry. Realising this goal is contingent on a close correlation between theory, experiments, and the real world. Although the temporal pattern of resource supply can play a major role in microbial community assembly, resource dynamics are commonly treated inconsistently in theoretical and experimental research. Here we explore how the composition of communities varies under continuous resource supply, typical of theoretical approaches, versus pulsed resource supply, typical of experiments. Using simulations of classical resource competition models, we show that community composition diverges rapidly between the two regimes, with almost zero overlap in composition once the pulsing interval stretches beyond just four hours. The implication for the rapidly growing field of microbial community optimisation is that the resource supply regime must be tailored to the community being optimised. As such, we argue that resource supply dynamics should be considered both a constraint in the design of novel microbial communities and as a tuning mechanism for the optimisation of pre-existing communities like those found in the human gut.
View Full Publication open_in_new
Abstract
The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.
View Full Publication open_in_new
Abstract
Initial analyses showed that asteroid Ryugu's composition is close to CI (Ivuna-like) carbonaceous chondrites (CCs) - the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (for example, Ti, Cr) overlap with other CC groups, so the details of the link between Ryugu and the CI chondrites are not yet fully clear. Here we show that Ryugu and CI chondrites have the same zinc and copper isotopic composition. As the various chondrite groups have very distinct Zn and Cu isotopic signatures, our results point at a common genetic heritage between Ryugu and CI chondrites, ruling out any affinity with other CC groups. Since Ryugu's pristine samples match the solar elemental composition for many elements, their Zn and Cu isotopic compositions likely represent the best estimates of the solar composition. Earth's mass-independent Zn isotopic composition is intermediate between Ryugu/CC and non-carbonaceous chondrites (NCs), suggesting a contribution of Ryugu-like material to Earth's budgets of Zn and other moderately volatile elements.
View Full Publication open_in_new
Abstract
Meteorites record processes that occurred before and during the formation of the Solar System in the form of nucleosynthetic anomalies: isotopic compositions that differ from the Solar System patterns. Nucleosynthetic anomalies are rarely seen in volatile elements such as potassium at bulk meteorite scale. We measured potassium isotope ratios in 32 meteorites and identified nucleosynthetic anomalies in the isotope potassium-40. The anomalies are larger and more variable in carbonaceous chondrite (CC) meteorites than in noncarbonaceous (NC) meteorites, indicating that CCs inherited more material produced in supernova nucleosynthesis. The potassium-40 anomaly of Earth is close to that of the NCs, implying that Earth's potassium was mostly delivered by NCs.
View Full Publication open_in_new
Abstract
We present a spectroscopic survey of 248 white dwarf candidates within 40 pc of the Sun; of these 244 are in the Southern hemisphere. Observations were performed mostly with the Very Large Telescope (X-Shooter) and Southern Astrophysical Research Telescope. Almost all candidates were selected from Gaia Data Release 3 (DR3). We find a total of 246 confirmed white dwarfs, 209 of which had no previously published spectra, and two main-sequence star contaminants. Of these, 100 white dwarfs display hydrogen Balmer lines, 69 have featureless spectra, and two show only neutral helium lines. Additionally, 14 white dwarfs display traces of carbon, while 37 have traces of other elements that arc heavier than helium. We observe 35 magnetic white dwarfs through the detection of Zeeman splitting of their hydrogen Balmer or metal spectral lines. High spectroscopic completeness (> 97 percent) has now been reached, such that we have 1058 confirmed Gala DR3 white dwarfs out of 1083 candidates within 40 pc of the Sun at all declinations.
View Full Publication open_in_new
Abstract
Understanding planet formation requires robust population studies, which are designed to reveal trends in planet properties. In this work we aim to determine if and how different methods for selecting populations of exoplanets for atmospheric characterization with JWST could influence population-level inferences. We generate three hypothetical surveys of super-Earths/sub-Neptunes, with each survey designed to span a similar radius-insolation flux space. The survey samples are constructed based on three different selection criteria (evenly spaced by eye, binned, and a quantitative selection function). Using an injection-recovery technique, we test how robustly individual-planet atmospheric parameters and population-level parameters can be retrieved. We find that all three survey designs result in equally suitable targets for individual atmospheric characterization, but not equally suitable targets for constraining population parameters. Only samples constructed with a quantitative method or that are sufficiently evenly spaced-by-eye result in robust population parameter constraints. Furthermore, we find that the sample with the best targets for individual atmospheric study does not necessarily result in the best-constrained population parameters. The method of sample selection must be considered. We also find that there may be large variability in population-level results with a sample that is small enough to fit in a single JWST cycle (similar to 12 planets), suggesting that the most successful population-level analyses will be multicycle. Lastly, we infer that our exploration of sample selection is limited by the small number of transiting planets with measured masses around bright stars. Our results can guide future development of programs that aim to determine underlying trends in exoplanet-atmospheric properties, and, by extension, formation and evolution processes.
View Full Publication open_in_new
Abstract
We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.
View Full Publication open_in_new
Abstract
Marine microbial communities in coastal environments are subject to both seasonal fluctuations and anthropogenic alterations of environmental conditions. The separate influences of temperature and resource-dependency on phytoplankton growth, community, and ecosystem metabolism are relatively well understood. However, winners and losers in the ocean are determined based on the interplay among often rapidly changing biological, chemical and physical drivers. The direct, indirect, and interactive effects of these conditions on planktonic food web structure and function are poorly constrained. Here, we investigated how simultaneous manipulation of temperature and nutrient availability affects trophic transfer from phytoplankton to herbivorous protists, and their resulting implications at the ecosystem level. Temperature directly affected herbivorous protist composition; ciliates dominated (66%) in colder treatment and dinoflagellates (60%) at warmer temperatures. Throughout the experiments, grazing rates were < 0.1 d(-1), with higher rates at subzero temperatures. Overall, the nutrient-temperature interplay affected trophic transfer rates antagonistically when nutrients were amended, and synergistically, when nutrients were not added. This interaction resulted in higher percentages of primary production consumed under nutrient unamended compared to nutrient amended conditions. At the ecosystem level, these changes may determine the fate of primary production, with most of the production likely exported out of the pelagic zone in high-temperature and nutrient conditions, while high-temperature and low-nutrient availability strengthened food web coupling and enhanced trophic transfer. These results imply that in warming oceans, management of coastal nutrient loading will be a critical determinant of the degree of primary production removal by microzooplankton and dependent ecosystem production.
View Full Publication open_in_new
Abstract
In a changing climate, the future survival and productivity of species rely on individual populations to respond to shifting environmental conditions. Many tree species, including northern red oak (Quercus rubra), exhibit phenotypic plasticity, the ability to respond to changes in environmental conditions at within-generation time scales, through varying traits such as leaf phenology. Phenotypic plasticity of phenology may vary among populations within a species' range, and it is unclear if the range of plasticity is adequate to promote fitness. Here, we used a 58-year-old common garden to test whether northern red oak populations differed in phenological sensitivity to changes in temperature and whether differences in phenological sensitivity were associated with differences in productivity and survival (proxies of fitness). We recorded 8 years of spring leaf emergence and autumn leaf coloration and loss in 28 distinct populations from across the species' full range. Across the 28 populations, spring leaf out consistently advanced in warmer years, but fall phenology was less responsive to changes in temperature. Southern, warm-adapted populations had larger shifts in phenology in response to springtime warming but had lower long-term survival. Moreover, higher phenological sensitivity to spring warming was not strongly linked to increased productivity. Instead, fitness was more closely linked to latitudinal gradients. Although springtime phenological sensitivity to climate change is common across northern red oak populations, responses of productivity and survival, which could determine longer-term trajectories of species abundance, are more variable across the species' range.
View Full Publication open_in_new
Abstract
We combine JWST observations with Atacama Large Millimeter/submillimeter Array CO and Very Large Telescope MUSE H alpha data to examine off-spiral arm star formation in the face-on, grand-design spiral galaxy NGC 628. We focus on the northern spiral arm, around a galactocentric radius of 3-4 kpc, and study two spurs. These form an interesting contrast, as one is CO-rich and one CO-poor, and they have a maximum azimuthal offset in MIRI 21 mu m and MUSE H alpha of around 40 degrees (CO-rich) and 55 degrees (CO-poor) from the spiral arm. The star formation rate is higher in the regions of the spurs near spiral arms, but the star formation efficiency appears relatively constant. Given the spiral pattern speed and rotation curve of this galaxy and assuming material exiting the arms undergoes purely circular motion, these offsets would be reached in 100-150 Myr, significantly longer than the 21 mu m and H alpha star formation timescales (both < 10 Myr). The invariance of the star formation efficiency in the spurs versus the spiral arms indicates massive star formation is not only triggered in spiral arms, and cannot simply occur in the arms and then drift away from the wave pattern. These early JWST results show that in situ star formation likely occurs in the spurs, and that the observed young stars are not simply the "leftovers" of stellar birth in the spiral arms. The excellent physical resolution and sensitivity that JWST can attain in nearby galaxies will well resolve individual star-forming regions and help us to better understand the earliest phases of star formation.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 244
  • Page 245
  • Page 246
  • Page 247
  • Current page 248
  • Page 249
  • Page 250
  • Page 251
  • Page 252
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025