Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    JWST image
    Colloquium

    Prof. Harley Katz (University of Chicago)

    The Spectral Revolution at Cosmic Dawn: Interpreting High-Redshift JWST Observations with Next-Generation Models

    February 10

    11:00am PST

    Lava exoplanet
    Seminar

    Kaustav Das (Caltech)

    TBD

    February 13

    12:15pm PST

    quasars
    Colloquium

    Dr. Kirsten Hall (Center for Astrophysics, Harvard University)

    The hottest phase of quasar winds revealed: excess intergalactic heating detected via the thermal Sunyaev-Zel'dovich effect

    February 17

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Lori Willhite Headsot
    Breaking News
    February 03, 2026

    Lori Willhite brings EPL's mass spec lab into the future

    Jennifer Kasbohm & Andrea Giuliani
    Breaking News
    February 02, 2026

    Geochronology: Decoding Earth’s Past to Shape Its Future

    Composition of curves and straight lines. Graphic Design. Magic energy multicolored fractal. 3D rendering.
    Breaking News
    February 01, 2026

    Does Time Have a Second Arrow? Two Carnegie Scientists Probe the Evolution of Everything

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Indigenous crops, commonly known as orphan, forgotten, or neglected crops, are understudied, but have important roles in the diet and economy of the communities that cultivate them. Here, we review po-tential benefits of Indigenous crop research and highlight the impor-tance of an anticolonial framework to prevent exploitation of these unique resources.
View Full Publication open_in_new
Abstract
Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.
View Full Publication open_in_new
Abstract
The Sample Analysis at Mars (SAM) suite instrument on board NASA's Curiosity rover has characterized the inorganic and organic chemical composition of seven samples from the Glen Torridon (GT) clay-bearing unit. A variety of organic molecules were detected with SAM using pyrolysis (up to similar to 850 degrees C) and wet chemistry experiments coupled with evolved gas analysis (EGA) and gas chromatography-mass spectrometry. SAM EGA and GCMS analyses revealed a greater diversity and abundance of sulfur-bearing aliphatic and aromatic organic compounds in the sediments of this Gale crater unit than earlier in the mission. We also report the detection of nitrogen-containing, oxygen-containing, and chlorine-containing molecules, as well as polycyclic aromatic hydrocarbons found in GT, although the sources of some of these organics may be related to the presence of chemical reagents in the SAM instrument background. However, sulfur-bearing organics released at high temperature (>= 600 degrees C) are likely derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources and consistent with the presence of recalcitrant organic materials in the sample. The SAM measurements of the GT clay-bearing unit expand the inventory of organic matter present in Gale crater and is also consistent with the hypothesis that clay minerals played an important role in the preservation of ancient refractory organic matter on Mars. These findings deepen our understanding of the past habitability and biological potential of Gale crater.
View Full Publication open_in_new
Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Seitah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Seitah is a unit informally named Maaz, which we interpret as lava flows or the chemical complement to Seitah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
View Full Publication open_in_new
Abstract
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Seitah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.
View Full Publication open_in_new
Abstract
Fast yellow pulsating supergiants (FYPS) are a recently discovered class of evolved massive pulsators. As candidate supergiant objects, and one of the few classes of pulsating evolved massive stars, these objects have incredible potential to change our understanding of the structure and evolution of massive stars. Here we examine the lightcurves of a sample of 126 cool supergiants in the Magellanic Clouds observed by the Transiting Exoplanet Survey Satellite in order to identify pulsating stars. After making quality cuts and filtering out contaminant objects, we examine the distribution of pulsating stars in the Hertzprung-Russel (HR) diagram, and find that FYPS occupy a region above . This luminosity boundary corresponds to stars with initial masses of similar to 18-20 M-?, consistent with the most massive red supergiant progenitors of supernovae (SNe) II-P, as well as the observed properties of SNe IIb progenitors. This threshold is in agreement with the picture that FYPS are post-RSG stars. Finally, we characterize the behavior of FYPS pulsations as a function of their location in the HR diagram. We find low-frequency pulsations at higher effective temperatures, and higher-frequency pulsations at lower temperatures, with a transition between the two behaviors at intermediate temperatures. The observed properties of FYPS make them fascinating objects for future theoretical study.
View Full Publication open_in_new
AGU Chicago View from event space
December 12, 2022
Campus News

PHOTOS: 2022 AGU Alumni Party

Abstract
We report the discovery of giant (50-100 kpc) [O ii] emitting nebulae with MUSE in the field of TXS 0206-048, a luminous quasar at z = 1.13. "Down-the-barrel" UV spectra of the quasar show absorption at velocities coincident with those of the extended nebulae, enabling new insights into inflows and outflows around the quasar host. One nebula exhibits a filamentary morphology extending over 120 kpc from the halo toward the quasar and intersecting with another nebula surrounding the quasar host with a radius of 50 kpc. This is the longest cool filament observed to date and arises at higher redshift and in a less massive system than those in cool-core clusters. The filamentary nebula has line-of-sight velocities >300 km s(-1) from nearby galaxies but matches that of the nebula surrounding the quasar host where they intersect, consistent with accretion of cool intergalactic or circumgalactic medium or cooling hot halo gas. The kinematics of the nebulae surrounding the quasar host are unusual and complex, with redshifted and blueshifted spiral-like structures. The emission velocities at 5-10 kpc from the quasar match those of inflowing absorbing gas observed in UV spectra of the quasar. Together, the extended nebulae and associated redshifted absorption represent a compelling case of cool, filamentary gas accretion from halo scales into the extended interstellar medium and toward the nucleus of a massive quasar host. The inflow rate implied by the combined emission and absorption constraints is well below levels required to sustain the quasar's radiative luminosity, suggesting anisotropic or variable accretion.
View Full Publication open_in_new
Ming Hao Postdoc 2022
December 10, 2022
Awards

AGU recognizes Postdoc Ming Hao for graduate research in mineral physics

Pagination

  • Previous page chevron_left
  • …
  • Page 254
  • Page 255
  • Page 256
  • Page 257
  • Current page 258
  • Page 259
  • Page 260
  • Page 261
  • Page 262
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026