Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

    Sun rises over a farm with neat rows of crops
    Breaking News
    May 27, 2025

    Planning for a climate-resilient agricultural future

    Black and white photo of Carnegie Science's former Desert Laboratory in Arizona
    Breaking News
    May 07, 2025

    The Desert Laboratory: Carnegie Science's Pioneering Role in American Ecology

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Bubble-plume mixing systems are often deployed in eutrophic lakes and reservoirs to manage phytoplankton taxa. Unfortunately, inconsistent outcomes from bubble-plume (induced) mixing are often reported in the literature. The present study investigates the response of phytoplankton to induced mixing using a whole-reservoir field experiment and a three-dimensional hydrodynamic model (Si3D) coupled with the Aquatic EcoDynamics (AED) model through the framework for aquatic biogeochemical modelling (FABM). The coupled Si3D-AED model is validated against a 24-h field mixing experiment and subsequently used for a numerical parametric study to investigate phytoplankton responses to various induced mixing scenarios in which the phytoplankton settling rate, phytoplankton growth rate, reservoir depth, and mixing system diffuser depth were sequentially varied. Field observations during the mixing experiment suggest that the total phytoplankton concentration (measured in mu g/L) across the reservoir was reduced by nearly 10% during the 24-h mixing period. The numerical modeling results show that phytoplankton concentration may be substantially affected by the functional traits of the phytoplankton and the deployment depth of the mixing diffuser. Interestingly, the numerical results indicate that the phytoplankton concentration is controlled by reduced growth rates due to light limitation in deep reservoirs (> 20 m), whereas settling loss is a more important factor in shallow reservoirs during the mixing period. In addition, the coupled Si3D-AED model results suggest that deploying the mixing diffuser deeper in the water column to increase mixing depth may generally improve the successful management of cyanobacteria using bubble-plume mixing systems. Thus, the coupled Si3D-AED model introduced in the present study can assist with the design and operation of bubble-plume mixing systems.
open_in_new
Abstract
Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.
open_in_new
Abstract
Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH4) and carbon dioxide (CO2). The vertical distribution and diffusive efflux of CH4 and CO2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMS as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH4 accumulated within the anoxic MOM, reaching a maximum of 120 mu M, and elevated concentrations of CO2 accumulated in the oxic hypolinin ion, reaching a maximum of 780 mu M. Interestingly, the largest observed diffusive CH4 effluxes occurred before fall turnover in both years, while peak diffusive CO2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH4 and CO2 in the water column in reservoirs, resulting in the accumulation of CH4 in the metalimnion (vs. at the sediments) and CO2 in the hypolimnion. (C) 2013 Elsevier B.V. All rights reserved.
open_in_new
Abstract
Chaoborus spp. (midge larvae) live in the anoxic sediments and h-ypolimnia of freshwater lakes and reservoirs during the day and migrate to the surface waters at night to feed on plankton. It has recently been proposed that Chaoborus take up methane (CH4) from the sediments in their tracheal gas sacs, use this acquired buoyancy to ascend into the surface waters, and then release the CH4, thereby serving as a CH4 "pump" to the atmosphere. We tested this hypothesis using diel surveys and seasonal monitoring, as well as incubations of Chaoborus to measure CH, transport in their gas sacs at different depths and times in a eutrophic reservoir. We found that Chaoborus transported CH, from the hypolimnion to the lower epilimnion at dusk, but the overall rate of CH4 transport was minor, and incubations revealed substantial variability in CH4 transport over space and time. We calculated that Chaoborus transport similar to 0.1 mmol CH4 m(-2) yr(-1) to the epilimnion in our study reservoir, a very low proportion (<1%) of total CH4 diffusive flux during the summer stratified period. Our data further indicate that CH4 transport by Chaoborus is sensitive to water column mixing, Chaoborus density, and Chaoborus species identity.
open_in_new
Abstract
Organic carbon (OC) mineralization in freshwaters is dependent on oxygen availability near the sediments, which controls whether OC inputs will be buried or respired. However, oxygen dynamics in waterbodies are changing globally due to land use and climate, and the consequences of variable oxygen conditions for OC burial are unknown. We manipulated hypolimnetic oxygen availability in a whole-reservoir experiment and used a mass balance OC model to quantify rates of OC burial. Throughout summer stratification, we observed that OC burial rates were tightly coupled to sediment oxygen concentrations: oxic conditions promoted the mineralization of "legacy" OC that had accumulated over years of sedimentation, resulting in negative OC burial. Moreover, our study demonstrates that fluctuating oxygen conditions can switch ecosystem-scale OC burial in a reservoir between positive and negative rates. Consequently, changing oxygen availability in freshwaters globally will likely have large implications for the role of these ecosystems as OC sinks.
open_in_new
Abstract
Water column mixing can influence community composition of pelagic phytoplankton in lakes and reservoirs. Previous studies suggest that low mixing favors cyanobacteria, while increased mixing favors green algae and diatoms. However, this shift in community dominance is not consistently achieved when epilimnetic mixers are activated at the whole-ecosystem scale, possibly because phytoplankton community responses are mediated by mixing effects on other ecosystem processes. We conducted two epilimnetic mixing experiments in a small drinking water reservoir using a bubble-plume diffuser system. We measured physical, chemical, and biological variables before, during, and after mixing and compared the results to an unmixed reference reservoir. We observed significant increases in the biomass of cyanobacteria (from 0.8 +/- 0.2 to 2.4 +/- 1.1 g L-1, p = 0.008), cryptophytes (from 0.7 +/- 0.1 to 1.9 +/- 0.6 g L-1, p = 0.003), and green algae (from 3.8 to 4.4 g L-1, p = 0.15) after our first mixing event, likely due to increased total phosphorus from entrainment of upstream sediments. After the second mixing event, phytoplankton biomass did not change but phytoplankton community composition shifted from taxa with filamentous morphology to smaller, rounder taxa. Our results suggest that whole-ecosystem dynamics and phytoplankton morphological traits should be considered when predicting phytoplankton community responses to epilimnetic mixing.
open_in_new
Abstract
Lakes and reservoirs worldwide are increasingly experiencing depletion of dissolved oxygen (anoxia) in their bottom waters (the hypolimnion) because of climate change and eutrophication, which is altering the dynamics of many freshwater ecological communities. Hypolimnetic anoxia may substantially alter the daily migration and distribution of zooplankton, the dominant grazers of phytoplankton in aquatic food webs. In waterbodies with oxic hypolimnia, zooplankton exhibit diel vertical migration (DVM), in which they migrate to the dark hypolimnion during the day to escape fish predation or ultraviolet (UV) radiation damage in the well-lit surface waters (the epilimnion). However, due to the physiologically stressful conditions of anoxic hypolimnia, we hypothesized that zooplankton may be forced to remain in the epilimnion during daylight, trading oxic stress for increased predation risk or UV radiation damage. To examine how anoxia impacts zooplankton vertical migration, distribution, biomass, and community composition over day-night periods, we conducted multiple diel sampling campaigns on reservoirs that spanned oxic, hypoxic, and anoxic hypolimnetic conditions. In addition, we sampled the same reservoirs fortnightly during the daytime to examine the vertical position of zooplankton throughout the summer stratified season. Under anoxic conditions, most zooplankton taxa were predominantly found in the epil-imnion during the day and night, did not exhibit DVM, and had lower seasonal biomass than in reservoirs with oxic hypolimnia. Only the phantom midge larva, Chaoborus spp., was consistently anoxia-tolerant. Consequently, our results suggest that hypolimnetic anoxia may alter zooplankton migration, biomass, and behavior, which may in turn exacerbate water quality degradation due to the critical role zooplankton play in freshwater ecosystems.
open_in_new
Abstract
In the era of big data, ecologists are increasingly relying on computational approaches and tools to answer existing questions and pose new research questions. These include both software applications (e.g., simulation models, databases and machine learning algorithms) and hardware systems (e.g., wireless sensor networks, supercomputing, drones and satellites), motivating the need for greater collaboration between computer scientists and ecologists. Here, we outline some synergistic opportunities for scientists in both disciplines that can be gained by building collaborations between the computer science and ecology research communities, with a focus on the benefits to ecology specifically. We also identify past contributions of computer science to ecology, including high-frequency environmental sensor technology, advanced supercomputing capacity for ecological modeling, databases for long-term and high-frequency datasets, and software programs for ecological analyses, to anticipate future potential contributions. These examples highlight the power and potential for further integration of computer science technology and ideas into the ecological research community. Finally, we translate our own experiences working together as a team of computer scientists and ecologists over the past decade into a conceptual framework with recommendations for supporting productive collaborations at the interface of the two disciplines. We specifically focus on how to apply best practices of team science for bridging computer science and ecology, which we advocate will substantially benefit ecology long-term.
open_in_new
Abstract
Munger ZW, Carey CC, Gerling AB, Doubek JP, Hamre KD, McClure RP, Schreiber ME. 2018. Oxygenation and hydrologic controls on iron and manganese mass budgets in a drinking-water reservoir. Lake Reserv Manage. 35:277-291. In seasonally stratified lakes and reservoirs, fluctuating hypolimnetic oxygen and hydrologic conditions in the watershed can influence the retention of metals and their exchange between the sediments and water column. In particular, iron (Fe) and manganese (Mn) cycling at the sediment-water interface can be dynamic in response to variability in the watershed and within the waterbody, which has substantial implications for drinking water quality. We calculated a mass budget for Fe and Mn in a shallow drinking-water reservoir over a 2-year period in which we manipulated the tributary inflow rate and dissolved oxygen (DO) concentrations in the hypolimnion at the reservoir scale. We found that the net Fe and Mn release from the sediments into the water column was suppressed during oxygenation; however, both metals continued to be released from the sediments, even during well-oxygenated conditions. Oxygenation in the hypolimnion had no effect on the net export of metals from the reservoir to downstream. Instead, the overall net export of Fe and Mn during the stratified period was influenced by hydrologic inflows. In summary, we found that manipulating hypolimnetic oxygenation had an important effect on the cycling of Fe and Mn within the hypolimnion, but that the net retention of metals in the reservoir was driven primarily by hydrology.
open_in_new
Abstract
Cyanobacterial blooms are increasing in waterbodies worldwide because of anthropogenic forcing. Most blooms occur at the water's surface, but some cyanobacterial taxa, such as Planktothrix, are able to modify their buoyancy to access more favorable growing conditions in deeper waters. Here, we used in situ fluorometry to examine the vertical distribution and biomass of Planktothrix in a seasonally anoxic reservoir for 3 consecutive summers. We also collected depth profiles of photosynthetically active radiation, temperature, and nutrients to evaluate which environmental drivers were most important for predicting Planktothrix biomass. In all 3 summers, Planktothrix dominated the phytoplankton community, exhibiting a large (concentrations similar to 100 mu g/L), persistent (lasting similar to 100 d) bloom below the thermocline. The bloom consistently exhibited maximum biomass at or below the depth reached by 1% of surface light. Light availability probably was the most important factor driving the vertical distribution of the stratified Planktothrix bloom, and light, temperature, and nutrients together were strong predictors of cyanobacterial biomass in the hypolimnion, explaining 71 to 93% of the variation in biomass. Our data suggest that Planktothrix remained in the hypolimnion where nutrient availability was maximized, while progressing slightly upward in the water column through each summer in response to light limitation. Our findings demonstrate that Planktothrix can dominate in low light and anoxic conditions and can form persistent blooms that last for multiple months. As cyanobacterial blooms become more prevalent, monitoring cyanobacteria at the surface and at depth will become critically important in freshwater ecosystems.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 256
  • Page 257
  • Page 258
  • Page 259
  • Current page 260
  • Page 261
  • Page 262
  • Page 263
  • Page 264
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025