Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We report a new determination of the orbits of the irregular Saturnian satellites. We fit their numerically integrated orbits to a data set containing Earth-based observations and imaging data from the Cassini spacecraft. We include the statistics of the observation residuals, the satellites' orbital elements, and projected accuracies of the satellites' positions. We also provide astrometric positions derived from the Cassini imaging. Two of the satellites are considered lost because they have not been observed for more than one epoch and have indeterminate uncertainties in their positions. Three of the satellites appear to be in a Kozai resonance, with one being the first irregular satellite of any planet found to be in a 270 degrees rather than 90 degrees resonance.
View Full Publication open_in_new
Abstract
Protein coordinated iron-sulfur clusters drive electron flow within metabolic pathways for organisms throughout the tree of life. It is not known how iron-sulfur clusters were first incorporated into proteins. Structural analogies to iron-sulfide minerals present on early Earth, suggest a connection in the evolution of both proteins and minerals. The availability of large protein and mineral crystallographic structure data sets, provides an opportunity to explore co-evolution of proteins and minerals on a large-scale using informatics approaches. However, quantitative comparisons are confounded by the infinite, repeating nature of the mineral lattice, in contrast to metal clusters in proteins, which are finite in size. We address this problem using the Niggli reduction to transform a mineral lattice to a finite, unique structure that when translated reproduces the crystal lattice. Protein and reduced mineral structures were represented as quotient graphs with the edges and nodes corresponding to bonds and atoms, respectively. We developed a graph theory-based method to calculate the maximum common connected edge subgraph (MCCES) between mineral and protein quotient graphs. MCCES can accommodate differences in structural volumes and easily allows additional chemical criteria to be considered when calculating similarity. To account for graph size differences, we use the Tversky similarity index. Using consistent criteria, we found little similarity between putative ancient iron-sulfur protein clusters and iron-sulfur mineral lattices, suggesting these metal sites are not as evolutionarily connected as once thought. We discuss possible evolutionary implications of these findings in addition to suggesting an alternative proxy, mineral surfaces, for better understanding the coevolution of the geosphere and biosphere.
View Full Publication open_in_new
Abstract
We investigated the impact of pressure on thermophilic, chemolithoautotrophic NO3- reducing bacteria of the phyla Campylobacterota and Aquificota isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased NO3- consumption, lower cell concentrations, and overall slower growth in Caminibacter mediatlanticus (Campylobacterota) and Thermovibrio ammonificans (Aquificota), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic NO3- reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic NO3- reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by Campylobacterota at 25 MPa and Campylobacterota laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific NO3- reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S-0-oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation-reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and redox conditions, and their effects on seafloor chemolithoautotrophic NO3- reduction and other anaerobic chemolithoautotrophic processes.
View Full Publication open_in_new
Abstract
Providing affordable and nutritious food to a growing and increasingly affluent global population requires multifaceted approaches to target supply and demand aspects. On the supply side, expanding irrigation is key to increase future food production, yet associated needs for storing water and implications of providing that water storage, remain unknown. Here, we quantify biophysical potentials for storage-fed sustainable irrigation-irrigation that neither depletes freshwater resources nor expands croplands but requires water to be stored before use-and study implications for food security and infrastructure. We find that water storage is crucial for future food systems because 460 km3/yr of sustainable blue water, enough to grow food for 1.15 billion people, can only be used for irrigation after storage. Even if all identified future dams were to contribute water to irrigation, water stored in dammed reservoirs could only supply 209 ± 50 km3/yr to irrigation and grow food for 631 ± 145 million people. In the face of this gap and the major socioecologic externalities from future dams, our results highlight limits of gray infrastructure for future irrigation and urge to increase irrigation efficiency, change to less water-intensive cropping systems, and deploy alternative storage solutions at scale.
View Full Publication open_in_new
Abstract
We report the discovery of a new "changing-look" active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z = 0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020-2021 shows a dramatic dimming of Delta g approximate to 1 mag, followed by a rapid recovery on a timescale of several months, with the less than or similar to 2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011-2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve.
View Full Publication open_in_new
Abstract
The Hawaiian bobtail squid, Euprymna scolopes, harvests its luminous symbiont, Vibrio fischeri, from the surrounding seawater within hours of hatching. During embryogenesis, the host animal develops a nascent light organ with ciliated fields on each lateral surface. We hypothesized that these fields function to increase the efficiency of symbiont colonization of host tissues. Within minutes of hatching from the egg, the host's ciliated fields shed copious amounts of mucus in a non-specific response to bacterial surface molecules, specifically peptidoglycan (PGN), from the bacterioplankton in the surrounding seawater. Experimental manipulation of the system provided evidence that nitric oxide in the mucus drives an increase in ciliary beat frequency (CBF), and exposure to even small numbers of V. fischeri cells for short periods resulted in an additional increase in CBF. These results indicate that the light-organ ciliated fields respond specifically, sensitively, and rapidly, to the presence of nonspecific PGN as well as symbiont cells in the ambient seawater. Notably, the study provides the first evidence that this induction of an increase in CBF occurs as part of a thus far undiscovered initial phase in colonization of the squid host by its symbiont, i.e., host recognition of V. fischeri cues in the environment within minutes. Using a biophysics-based mathematical analysis, we showed that this rapid induction of increased CBF, while accelerating bacterial advection, is unlikely to be signaled by V. fischeri cells interacting directly with the organ surface. These overall changes in CBF were shown to significantly impact the efficiency of V. fischeri colonization of the host organ. Further, once V. fischeri has fully colonized the host tissues, i.e., about 12-24 h after initial host-symbiont interactions, the symbionts drove an attenuation of mucus shedding from the ciliated fields, concomitant with an attenuation of the CBF. Taken together, these findings offer a window into the very first interactions of ciliated surfaces with their coevolved microbial partners.
View Full Publication open_in_new
Abstract
Being able to quantify nutrient stoichiometry in the waterbodies is especially important given its strong effects on a variety of ecological processes. China has made huge progress in the improvement of surface water quality, but the accompanying changes to water nutrient stoichiometry and implications are not well understood yet. Our results have shown that the water nutrient cycles have been decoupled in China's populated regions, and population density and GDP values in the same catchment are useful in explaining the variances of lake N:P stoichiometry in East China Lake Region. In other regions, water N and P tend to respond to the selected parameters in a similar way, leading to the poor prediction of N:P stoichiometry. With the progress of water management in China, a similar change of water nutrients and their stoichiometry as the developed countries is occurring, i.e., faster decrease of TP concentrations than TN, and continuing increase of N:P ratios. It is necessary for the managers to be aware of the quick and large-scale changes of nutrient stoichiometry in the water, since the ecological risk caused by the changes to the aquatic systems is still not well known. (C) 2018 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
We present a blind time-delay cosmographic analysis for the lens system DES J0408-5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine themeasured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the 'effective' time-delay distance corresponding to the redshifts of the deflector and the lensed quasar D-Delta t(eff) = 3382(-115)(+146) Mpc and the angular diameter distance to the deflector D-d = 1711(-280)(+376) Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H-0 = 74.2(-3.0)(+2.7) km s(-1) Mpc(-1) assuming a flat Lambda CDM cosmology and a uniform prior for Omega(m) as Omega(m) similar to U(0.05, 0.5). This measurement gives the most precise constraint on H-0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H-0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H-0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2 sigma discrepancy from the cosmic microwave background measurement.
View Full Publication open_in_new
Abstract
Group V elements in crystal structure isostructural to black phosphorus with unique puckered two-dimensional layers exhibit exciting physical and chemical phenomena. However, as the first element of group V, nitrogen has never been found in the black phosphorus structure. Here, we report the synthesis of the black phosphorus-structured nitrogen at 146 GPa and 2200 K. Metastable black phosphorus-structured nitrogen was retained after quenching it to room temperature under compression and characterized in situ during decompression to 48 GPa, using synchrotron x-ray diffraction and Raman spectroscopy. We show that the original molecular nitrogen is transformed into extended single-bonded structure through gauche and trans conformations. Raman spectroscopy shows that black phosphorus-structured nitrogen is strongly anisotropic and exhibits high Raman intensities in two A(g) normal modes. Synthesis of black phosphorus-structured nitrogen provides a firm base for exploring new type of high-energy-density nitrogen and a new direction of two-dimensional nitrogen.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 259
  • Page 260
  • Page 261
  • Page 262
  • Current page 263
  • Page 264
  • Page 265
  • Page 266
  • Page 267
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025