Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

    JWST image
    Colloquium

    Prof. Harley Katz (University of Chicago)

    The Spectral Revolution at Cosmic Dawn: Interpreting High-Redshift JWST Observations with Next-Generation Models

    February 10

    11:00am PST

    Lava exoplanet
    Seminar

    Kaustav Das (Caltech)

    TBD

    February 13

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Lori Willhite Headsot
    Breaking News
    February 03, 2026

    Lori Willhite brings EPL's mass spec lab into the future

    Jennifer Kasbohm & Andrea Giuliani
    Breaking News
    February 02, 2026

    Geochronology: Decoding Earth’s Past to Shape Its Future

    Composition of curves and straight lines. Graphic Design. Magic energy multicolored fractal. 3D rendering.
    Breaking News
    February 01, 2026

    Does Time Have a Second Arrow? Two Carnegie Scientists Probe the Evolution of Everything

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Near-term, iterative ecological forecasts with quantified uncertainty have great potential for improving lake and reservoir management. For example, if managers received a forecast indicating a high likelihood of impending impairment, they could make decisions today to prevent or mitigate poor water quality in the future. Increasing the number of automated, real-time freshwater forecasts used for management requires integrating interdisciplinary expertise to develop a framework that seamlessly links data, models, and cyberinfrastructure, as well as collaborations with managers to ensure that forecasts are embedded into decision-making workflows. The goal of this study is to advance the implementation of near-term, iterative ecological forecasts for freshwater management. We first provide an overview of FLARE (Forecasting Lake And Reservoir Ecosystems), a forecasting framework we developed and applied to a drinking water reservoir to assist water quality management, as a potential open-source option for interested users. We used FLARE to develop scenario forecasts simulating different water quality interventions to inform manager decision-making. Second, we share lessons learned from our experience developing and running FLARE over 2 years to inform other forecasting projects. We specifically focus on how to develop, implement, and maintain a forecasting system used for active management. Our goal is to break down the barriers to forecasting for freshwater researchers, with the aim of improving lake and reservoir management globally.
View Full Publication open_in_new
Abstract
As climate and land use increase the variability of many ecosystems, forecasts of ecological variables are needed to inform management and use of ecosystem services. In particular, forecasts of phytoplankton would be especially useful for drinking water management, as phytoplankton populations are exhibiting greater fluctuations due to human activities. While phytoplankton forecasts are increasing in number, many questions remain regarding the optimal model time step (the temporal frequency of the forecast model output), time horizon (the length of time into the future a prediction is made) for maximizing forecast performance, as well as what factors contribute to uncertainty in forecasts and their scalability among sites. To answer these questions, we developed near-term, iterative forecasts of phytoplankton 1-14 days into the future using forecast models with three different time steps (daily, weekly, fortnightly), that included a full uncertainty partitioning analysis at two drinking water reservoirs. We found that forecast accuracy varies with model time step and forecast horizon, and that forecast models can outperform null estimates under most conditions. Weekly and fortnightly forecasts consistently outperformed daily forecasts at 7-day and 14-day horizons, a trend that increased up to the 14-day forecast horizon. Importantly, our work suggests that forecast accuracy can be increased by matching the forecast model time step to the forecast horizon for which predictions are needed. We found that model process uncertainty was the primary source of uncertainty in our phytoplankton forecasts over the forecast period, but parameter uncertainty increased during phytoplankton blooms and when scaling the forecast model to a new site. Overall, our scalability analysis shows promising results that simple models can be transferred to produce forecasts at additional sites. Altogether, our study advances our understanding of how forecast model time step and forecast horizon influence the forecastability of phytoplankton dynamics in aquatic systems and adds to the growing body of work regarding the predictability of ecological systems broadly.
View Full Publication open_in_new
Abstract
Freshwater phytoplankton communities are currently experiencing multiple global change stressors, including increasing frequency and intensity of storms. An important mechanism by which storms affect lake and reservoir phytoplankton is by altering the water column's thermal structure (e.g., changes to thermocline depth). However, little is known about the effects of intermittent thermocline deepening on phytoplankton community vertical distribution and composition or the consistency of phytoplankton responses to varying frequency of these disturbances over multiple years. We conducted whole-ecosystem thermocline deepening manipulations in a small reservoir. We used an epilimnetic mixing system to experimentally deepen the thermocline via five short (24-72 hr) mixing events across two summers, inducing potential responses to storms. For comparison, we did not manipulate thermocline depth in two succeeding summers. We collected weekly depth profiles of water temperature, light, nutrients, and phytoplankton biomass as well as bottle samples to assess phytoplankton community composition. We then used time-series analysis and multivariate ordination to assess the effects of intermittent thermocline deepening due to both our experimental manipulations and naturally occurring storms on phytoplankton community structure. We observed inter-annual and intra-annual variability in phytoplankton community response to thermocline deepening. We found that peak phytoplankton biomass was significantly deeper in years with a higher frequency of thermocline deepening events (i.e., years with both manipulations and natural storms) due to altered thermal stratification and more variable depth distributions of soluble reactive phosphorus. Furthermore, we found that the depth of peak phytoplankton biomass was linked to phytoplankton community composition, with certain taxa being associated with deep or shallow biomass peaks, often according to functional traits such as optimal growth temperature, mixotrophy, and low-light tolerance. For example, Cryptomonas taxa, which are low-light tolerant and mixotrophic, were associated with deep peaks, while the cyanobacterial taxon Dolichospermum was associated with shallow peaks. Our results demonstrate that abrupt thermocline deepening due to water column mixing affects both phytoplankton depth distribution and community structure via alteration of physical and chemical gradients. In addition, our work supports previous research that phytoplankton depth distributions are related to phytoplankton community composition at inter-annual and intra-annual timescales. Variability in the inter-annual and intra-annual responses of phytoplankton to abrupt thermocline deepening indicates that antecedent conditions and the seasonal timing of surface water mixing may mediate these responses. Our findings emphasise that phytoplankton depth distributions are sensitive to global change stressors and effects on depth distributions should be taken into account when predicting phytoplankton responses to increased storms under global change.
View Full Publication open_in_new
Abstract
Associations between animals and microbes affect not only the immediate tissues where they occur, but also the entire host. Metabolomics, the study of small biomolecules generated during metabolic processes, provides a window into how mutualistic interactions shape host biochemistry. The Hawaiian bobtail squid, Euprymna scolopes, is amenable to metabolomic studies of symbiosis because the host can be reared with or without its species-specific symbiont, Vibrio fischeri. In addition, unlike many invertebrates, the host squid has a closed circulatory system. This feature allows a direct sampling of the refined collection of metabolites circulating through the body, a focused approach that has been highly successful with mammals. Here, we show that rearing E. scolopes without its natural symbiont significantly affected one-quarter of the more than 100 hemolymph metabolites defined by gas chromatography mass spectrometry analysis. Furthermore, as in mammals, which harbor complex consortia of bacterial symbionts, the metabolite signature oscillated on symbiont-driven daily rhythms and was dependent on the sex of the host. Thus, our results provide evidence that the population of even a single symbiont species can influence host hemolymph biochemistry as a function of symbiotic state, host sex and circadian rhythm.
View Full Publication open_in_new
Abstract
Sheet 1: Relative expression values of ssrA from bacteria cells fraction or OMV fractions. Cells grown in three different media: a tryptone-based medium (LBS) or LBS with the addition of either glycerol (32.6 mM) or GlcNAc (10 mM). S1A Fig. Sheet 2: OD600 values over 24 h of bacteria growth in tryptone-based medium (LBS). S1A Fig. Sheet 3: OD600 values over 24 h of bacteria growth in minimum medium. S1A Fig. Sheet 4: Motility in soft agar of WT or DeltassrA cells measured as the diameter of the outer migration ring at 3 and 7 h post inoculation. S2B Fig. Sheet 5: Respiration rates of WT, DeltassrA, DeltassrA + ssrA, and a nonluminescent lux-deletion mutant (Deltalux) normalized to OD600. Fig 2C. Sheet 6: RCI between WT and DeltassrA in co-inoculated light organs after 24, 48, and 72 h. S2D Fig. Sheet 7: Relative expression values of ssrA and smpB. S2E Fig. GlcNAc, N-acetyl-glucosamine; LBS, Luria-Bertani salt medium; OD600, optical density at 600 nm; OMV, outer membrane vesicle; RCI, relative competitive index; WT, wild type. (XLSX) Copyright: CC BY 4.0
View Full Publication open_in_new
Abstract
Sheet 1: Survival proportions of juvenile squid colonized by either WT, DeltassrA, DeltassrA + ssrA, or DeltasmpB. Fig 4B, S6B Fig. Sheet 2: Dry weight of juvenile squid immediately after hatching ("Hatch") or at 4 d post hatching when kept APO or colonized with WT, DeltassrA, or a nonluminescent mutant (Deltalux) strain. Fig 4C. Sheet 3: Quantification of internal yolk-sac area of juvenile squid immediately after hatching ("Hatch") or at 2 d post hatching colonized with WT or DeltassrA. Fig 4D. APO, aposymbiotic; WT, wild type. (XLSX) Copyright: CC BY 4.0
View Full Publication open_in_new
Abstract
Sheet 1: Counts in OMV and hemolymph samples. Sheet 2: Numerical values for Fig 1B. Sheet 3: Differential-expression analysis (Fig 1C). OMV, outer membrane vesicle; RNA-seq, RNA sequencing. (XLSX) Copyright: CC BY 4.0
View Full Publication open_in_new
Abstract
. Copyright: CC BY 4.0
View Full Publication open_in_new
Abstract
Sheet 1: Relative expression values of C3. Fig 5B. Sheet 1: Relative expression values of RIG-I. Fig 5B. C3, complement protein 3; RIG-I, retinoic-acid inducible gene-I. (XLSX) Copyright: CC BY 4.0
View Full Publication open_in_new
Abstract
Sheet 1: Survival proportion of juvenile squid that were either single-colonized by WT or DeltassrA, or co-colonized at a 1:1 inoculum ratio with both WT and DeltassrA (n = 60). S6C Fig. Sheet 2: Respiration rates of newly hatched squid ("Hatch"), or of animals after 24 h, that were either maintained APO or colonized by WT, DeltassrA, or Deltalux strains. S6D Fig. Sheet 3: Internal yolk-sac area values, 2 d post colonization with WT, DeltassrA, its complement (DeltassrA + ssrA), the nonluminescent mutant (Deltalux), or DeltasmpB strains. S6E Fig. Sheet 4: Quantification of laccase-3 signal by HCR using relative fluorescence intensity of a Z-series image of the light organ. S7A Fig. Sheet 5: Quantification of laccase-3 presence by HCR fluorescence signal intensity from a Z-series image of light organs, 3 h after incubation with WT or DeltassrA OMVs. S7B Fig. APO, aposymbiotic; HCR, hybridization chain reaction; OMV, outer membrane vesicle; WT, wild type. (XLSX) Copyright: CC BY 4.0
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 261
  • Page 262
  • Page 263
  • Page 264
  • Current page 265
  • Page 266
  • Page 267
  • Page 268
  • Page 269
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026