Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC ((SMC)-M-4). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 mu m features relative to the 11.3 mu m feature and weak 8.6 and 17.0 mu m features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies-namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.
View Full Publication open_in_new
Abstract
Topographic correction methods rarely consider the canopy parameter effects directly and explicitly for sloping canopies. In order to address this problem, the topographic correction method MFM-GOST2 was developed by implementing the second version of the Geometric-Optical model for Sloping Terrains (the GOST2 model) in the multiple forward mode (MFM) inversion framework. First, a look up table (LUT) was constructed by multiple forward modeling of the GOST2 model; second, the radiance of a remotely sensed image and its corresponding topographic data were used for searching potential canopy parameter combinations from the LUT; and third, the corrected radiance was determined by averaging potential radiances of horizontal canopies from the LUT according to the canopy parameter combinations. The MFM-GOST2 and twelve generally used topographic correction methods were evaluated via a case study by visual analysis, linear relationship analysis, and the rose diagram analysis. The result showed that the MFM-GOST2 method successfully removed most of the topographic effects of a subset image of the Landsat-8 image in a case study. The case study also illustrates that the rose diagram analysis is a good way to evaluate topographic corrections, but the linear relationship analysis cannot be used independently for the evaluations because the decorrelation is not a sufficient condition to determine a successful topographic correction.
View Full Publication open_in_new
Abstract
Rugged terrain distorts optical remote sensing signals, and land-cover classification and biophysical parameter retrieval over mountainous regions must account for topographic effects. Therefore, topographic correction is a prerequisite for many remote sensing applications. In this study, we proposed a semi-physically based and simple topographic correction method for vegetation canopies based on path length correction (PLC). The PLC method was derived from the solution to the classic radiative transfer equation, and the influence of terrain on the radiative transfer process within the canopy is explicitly considered, making PLC physically sound. The radiative transfer equation was simplified to make PLC mathematically simple. Near-nadir observations derived from a Landsat 8 Operational Land Imager (OLI) image covering a mountainous region and wide field-of-view observations derived from simulation using a canopy reflectance model were combined to test the PLC correction method. Multi-criteria were used to provide objective evaluation results. The performances were compared to that of five other methods: CC, SCS + C, and SE, which are empirical parameter-based methods, and SCS and DS, which are semi-physical methods without empirical parameter. All the six methods could significantly reduce the topographic effects. However, SCS showed obvious overcorrection for near-nadir observations. The correction results from D-S showed an obvious positive bias. For near-nadir observations, the performance of PLC was comparable to the well-validated parameter-based methods. For wide field-of-view observations, PLC obviously outperformed all other methods. Because of the physical soundness and mathematical simplicity, PLC provides an efficient approach to correct the terrain-induced canopy BRDF distortion and will facilitate the exploitation of multi-angular information for biophysical parameter retrieval over mountainous regions.
View Full Publication open_in_new
Ned Ruby

Ned Ruby

Visiting Scientist

Ryan McClure

Ryan McClure

Postdoctoral Fellow

Grischa Chen

Grischa Chen

Scientific Lab Manager

Lisa Rouressol

Lisa Rouressol

Graduate Student

Vera Beilinson

Vera Beilinson

Graduate Student

Missing Headshot

Isaac Marinero

Lab Assistant

Abstract
Energy-harvesting-powered sensors are increasingly deployed beyond the reach of terrestrial gateways, where there is often no persistent power supply. Making use of the internet of drones (IoD) for data aggregation in such environments is a promising paradigm to enhance network scalability and connectivity. The flexibility of IoD and favorable line-of-sight connections between the drones and ground nodes are exploited to improve data reception at the drones. In this article, we discuss the challenges of online flight control of IoD, where data-driven neural networks can be tailored to design the trajectories and patrol speeds of the drones and their communication schedules, preventing buffer overflows at the ground nodes. In a small-scale IoD, a multi-agent deep reinforcement learning can be developed with long short-term memory to train the continuous flight control of IoD and data aggregation scheduling, where a joint action is generated for IoD via sharing the flight control decisions among the drones. In a large-scale IoD, sharing the flight cont rol decisions in real-time can result in communication overheads and interference. In this case, deep reinforcement learning can be trained with the second-hand visiting experiences, where the drones learn the actions of each other based on historical scheduling records maintained at the ground nodes.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 265
  • Page 266
  • Page 267
  • Page 268
  • Current page 269
  • Page 270
  • Page 271
  • Page 272
  • Page 273
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025