Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We report the discovery of a galaxy cluster at z = 1.62 located in the Spitzer Wide-Area Infrared Extragalactic survey XMM-LSS field. This structure was selected solely as an overdensity of galaxies with red Spitzer/Infrared Array Camera colors, satisfying ([3.6] - [4.5]) AB > -0.1 mag. Photometric redshifts derived from the Subaru XMM Deep Survey (BV iz bands), the UKIRT Infrared Deep Survey-Ultra-Deep Survey (UKIDSS-UDS, JK bands), and from the Spitzer Public UDS survey (3.6-8.0 mu m) show that this cluster corresponds to a surface density of galaxies at z approximate to 1.6 that is >20 sigma above the mean at this redshift. We obtained optical spectroscopic observations of galaxies in the cluster region using IMACS on the Magellan telescope. We measured redshifts for seven galaxies in the range z = 1.62-1.63 within 2.8 arcmin (<1.4 Mpc) of the astrometric center of the cluster. A posteriori analysis of the XMM data in this field reveal a weak (4 sigma) detection in the [0.5-2 keV] band compatible with the expected thermal emission from such a cluster. The color-magnitude diagram of the galaxies in this cluster shows a prominent red sequence, dominated by a population of red galaxies with (z - J) > 1.7 mag. The photometric-redshift probability distributions for the red galaxies are strongly peaked at z = 1.62, coincident with the spectroscopically confirmed galaxies. The rest-frame (U - B) color and scatter of galaxies on the red sequence are consistent with a mean luminosity-weighted age of 1.2 +/- 0.1 Gyr, yielding a formation redshift (z(f)) over bar = 2.35 +/- 0.10, and corresponding to the last significant star formation period in these galaxies.
View Full Publication open_in_new
Abstract
We measure the rest-frame colors (dust-corrected), infrared luminosities, star formation rates, and stellar masses of 92 galaxies in a Spitzer-selected cluster at z = 1.62. By fitting spectral energy distributions (SEDs) to 10-band photometry (0.4 mu m < lambda(obs) < 8 mu m) and measuring 24 mu m fluxes for the 12 spectroscopically confirmed and 80 photometrically selected members, we discover an exceptionally high level of star formation in the cluster core of similar to 1700 M(circle dot) yr(-1) Mpc(-2). The cluster galaxies define a strong blue sequence in (U-V) color and span a range in color. We identify 17 members with L(IR) > 10(11) L(circle dot), and these IR luminous members follow the same trend of increasing star formation with stellar mass that is observed in the field at z similar to 2. Using rates derived from both the 24 mu m imaging and SED fitting, we find that the relative fraction of star-forming members triples from the lowest to highest galaxy density regions; e.g., the IR luminous fraction increases from similar to 8% at Sigma similar to 10 gal Mpc(-2) to similar to 25% at Sigma greater than or similar to 100 gal Mpc(-2). The observed increase is a reversal of the well-documented trend at z < 1 and signals that we have reached the epoch when massive cluster galaxies are still forming a substantial fraction of their stars.
View Full Publication open_in_new
Abstract
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
View Full Publication open_in_new
Abstract
We investigate the stellar populations of Ly alpha emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg(2) sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z similar to 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M-UV, with a spectral slope beta similar to -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 mu m band. Using SED fitting we find that the stacked LAEs have low stellar masses of similar to(3-10) x 10(7) M-circle dot, very young ages of similar to 1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z similar to 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lya escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f(esc)(ion) similar to 0.6 at z = 5.7 and similar to 0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies.
View Full Publication open_in_new
Abstract
We present a technique to identify optical counterparts of 250-mu m-selected sources from the Herschel-ATLAS survey. Of the 6621 250 mu m > 32-mJy sources in our science demonstration catalogue we find that similar to 60 per cent have counterparts brighter than r = 22.4 mag in the Sloan Digital Sky Survey. Applying a likelihood ratio technique we are able to identify 2423 of the counterparts with a reliability R > 0.8. This is approximately 37 per cent of the full 250-mu m catalogue. We have estimated photometric redshifts for each of these 2423 reliable counterparts, while 1099 also have spectroscopic redshifts collated from several different sources, including the GAMA survey. We estimate the completeness of identifying counterparts as a function of redshift, and present evidence that 250-mu m-selected Herschel-ATLAS galaxies have a bimodal redshift distribution. Those with reliable optical identifications have a redshift distribution peaking at z approximate to 0.25 +/- 0.05, while submillimetre colours suggest that a significant fraction with no counterpart above the r-band limit have z > 1. We also suggest a method for selecting populations of strongly lensed high-redshift galaxies. Our identifications are matched to UV-NIR photometry from the GAMA survey, and these data are available as part of the Herschel-ATLAS public data release.
View Full Publication open_in_new
Abstract
We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z similar to 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines-with rest-frame equivalent widths similar to 1000 angstrom-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with similar to 10(8) M-circle dot in stellar mass, undergoing an enormous starburst phase with M-*/(M) over dot(*) of only similar to 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 x 10(-4) Mpc(-3)) can produce in similar to 4 Gyr much of the stellar mass density that is presently contained in 10(8)-10(9) M-circle dot dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.
View Full Publication open_in_new
Abstract
This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers similar to 125 arcmin(2) within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of similar to 800 arcmin(2) across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
View Full Publication open_in_new
Abstract
Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z similar to 2. Our sample consists of 72 moderate-luminosity (L-X similar to 10(42-44) erg s(-1)) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4(-5.9)(+5.8)%), while a smaller percentage are found in spheroids (27.8(-4.6)(+5.8)%). Roughly 16.7(-3.5)(+5.3)% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6(-5.9)(+5.6)%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z similar to 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z similar to 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z similar to 2 than previously thought.
View Full Publication open_in_new
Abstract
We discuss the structural and morphological properties of galaxies in a z = 1.62 proto-cluster using near-IR imaging data from Hubble Space Telescope Wide Field Camera 3 data of the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). The cluster galaxies exhibit a clear color-morphology relation: galaxies with colors of quiescent stellar populations generally have morphologies consistent with spheroids, and galaxies with colors consistent with ongoing star formation have disk-like and irregular morphologies. The size distribution of the quiescent cluster galaxies shows a deficit of compact (less than or similar to 1 kpc), massive galaxies compared to CANDELS field galaxies at z = 1.6. As a result, the cluster quiescent galaxies have larger average effective sizes compared to field galaxies at fixed mass at greater than 90% significance. Combined with data from the literature, the size evolution of quiescent cluster galaxies is relatively slow from z similar or equal to 1.6 to the present, growing as (1 + z)(-0.6 +/- 0.1). If this result is generalizable, then it implies that physical processes associated with the denser cluster region seem to have caused accelerated size growth in quiescent galaxies prior to z = 1.6 and slower subsequent growth at z < 1.6 compared to galaxies in the lower density field. The quiescent cluster galaxies at z = 1.6 have higher ellipticities compared to lower redshift samples at fixed mass, and their surface-brightness profiles suggest that they contain extended stellar disks. We argue that the cluster galaxies require dissipationless (i.e., gas-poor or "dry") mergers to reorganize the disk material and to match the relations for ellipticity, stellar mass, size, and color of early-type galaxies in z < 1 clusters.
View Full Publication open_in_new
Abstract
We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 deg(2) medium-deep survey at 3.6 and 4.5 mu m with the postcryogenic Spitzer Space Telescope to approximate to 2 mu Jy (AB = 23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South, and XMM-LSS). SERVSis designed to enable the study of galaxy evolution as a function of environment from z similar to 5 to the present day and is the first extragalactic survey that is both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z greater than or similar to 1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near-through far-infrared, submillimeter, and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this article, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicking to catalogs, and coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 269
  • Page 270
  • Page 271
  • Page 272
  • Current page 273
  • Page 274
  • Page 275
  • Page 276
  • Page 277
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026