Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Acylsugars are a class of plant defense compounds produced across many distantly related families. Members of the horticulturally important morning glory (Convolvulaceae) family produce a diverse subclass of acylsugars called resin glycosides (RGs), which comprise oligosaccharide cores, hydroxyacyl chain(s), and decorating aliphatic and aromatic acyl chains. While many RG structures are characterized, the extent of structural diversity of this class in different genera and species is not known. In this study, we asked whether there has been lineage-specific diversification of RG structures in different Convolvulaceae species that may suggest diversification of the underlying biosynthetic pathways. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed from root and leaf extracts of 26 species sampled in a phylogeny-guided manner. LC-MS/MS revealed thousands of peaks with signature RG fragmentation patterns with one species producing over 300 signals, mirroring the diversity in Solanaceae-type acylsugars. A novel RG from Dichondra argentea was characterized using nuclear magnetic resonance spectroscopy, supporting previous observations of RGs with open hydroxyacyl chains instead of closed macrolactone ring structures. Substantial lineagespecific differentiation in utilization of sugars, hydroxyacyl chains, and decorating acyl chains was discovered, especially among Ipomoea and Convolvulus-the two largest genera in Convolvulaceae. Adopting a computational, knowledge-based strategy, we further developed a high-recall workflow that successfully explained similar to 72% of the MS/MS fragments, predicted the structural components of 11/13 previously characterized RGs, and partially annotated similar to 45% of the RGs. Overall, this study improves our understanding of phytochemical diversity and lays a foundation for characterizing the evolutionary mechanisms underlying RG diversification.
View Full Publication open_in_new
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
View Full Publication open_in_new
Abstract
In angiosperms, double fertilization of an egg cell and a central cell with two sperm cells results in the formation of a seed containing a diploid embryo and a triploid endosperm. The extent to which the embryo sac controls postfertilization events in the seed is unknown. The novel gametophytic maternal-effect maize mutation, baseless1 (bsl1) affects central cell development within the embryo sac, frequently by altering the position of the two polar nuclei. Despite this irregularity, fertilization is as efficient as in wild type. The spatial expression of basal endosperm-specific transcripts is altered in free-nuclear and cellular mutant endosperms. At later stages of seed development, bsl1 predominantly affects development of the basal endosperm transfer layer (BETL). When bsl1/+ diploid plants were pollinated by wild-type tetraploid plants, the BETL abnormalities observed in bsl1/bsl1/+/+ tetraploid endosperms were diverse and of variable severity. Moreover, the frequency of kernels with severely perturbed BETL development correlated with the percentage of severely affected bsl1 central cells. Therefore, BSL1 is likely required in the central cell before fertilization for correct BETL patterning to occur. These findings provide new genetic evidence that a maternal gametophytic component is necessary for correct endosperm patterning.
View Full Publication open_in_new
Randall Scarborough

Randall Scarborough

Operations Lab Manager

Sonia Gasmi

Sonia Gasmi

Postdoctoral Fellow

Abstract
Mutations can occur throughout the virus genome and may be beneficial, neutral or deleterious. We are interested in mutations that yield a C next to a G, producing CpG sites. CpG sites are rare in eukaryotic and viral genomes. For the eukaryotes, it is thought that CpG sites are rare because they are prone to mutation when methylated. In viruses, we know less about why CpG sites are rare. A previous study in HIV suggested that CpG-creating transition mutations are more costly than similar non-CpG-creating mutations. To determine if this is the case in other viruses, we analyzed the allele frequencies of CpG-creating and non-CpG-creating mutations across various strains, subtypes, and genes of viruses using existing data obtained from Genbank, HIV Databases, and Virus Pathogen Resource. Our results suggest that CpG sites are indeed costly for most viruses. By understanding the cost of CpG sites, we can obtain further insights into the evolution and adaptation of viruses.
View Full Publication open_in_new
Abstract
We present the first results from a study designed to test whether, given high-quality spectrophotometry spanning the mid-ultraviolet-optical wavelength regime, it is possible to distinguish the metal content and star formation history of individual elliptical galaxies with sufficient accuracy to establish whether their formation history is linked to their detailed morphology and position on the Fundamental Plane.
View Full Publication open_in_new
Abstract
It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z similar to 2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the 'missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs - where the BH has grown appreciably to begin heating the dust emission.
View Full Publication open_in_new
Abstract
We investigate the stellar populations of Ly alpha emitters (LAEs) at z = 3.1 and 3.7 in 0.65 deg2 of the Subaru/XMM-Newton Deep Field, based on rest-frame ultraviolet-to-optical photometry obtained from the Subaru/XMM-Newton Deep Survey, the UKIRT Infrared Deep Sky Survey/Ultra Deep Survey (UKIDSS/UDS), and the Spitzer legacy survey of the UKIDSS/UDS. Among a total of 302 LAEs (224 for z = 3.1 and 78 for z = 3.7), only 11 are detected in the K band, i.e. brighter than K(3 Sigma) = 24.1 mag. Eight of the 11 K-detected LAEs are spectroscopically confirmed. In our stellar population analysis, we treat K-detected objects individually, while K-undetected objects are stacked at each redshift. We find that the K-undetected objects, which should closely represent the LAE population as a whole, have low stellar masses of similar to 108-108.5 M(circle dot), modest star formation rates (SFRs) of 1-100 M(circle dot) yr-1, and modest dust extinction of E(B - V)(star) < 0.2. The K-detected objects are massive, M(star) similar to 109-1010.5 M(circle dot), and have significant dust extinction with a median of E(B - V)(star) similar or equal to 0.3. Four K-detected objects with the reddest spectral energy distributions, two of which are spectroscopically confirmed, are heavily obscured with E(B - V)(star) similar to 0.65, and their continua resemble those of some local ultraluminous infrared galaxies (ULIRGs). Interestingly, they have large Ly alpha equivalent widths similar or equal to 70-250 A. If these four are excluded, our sample has a weak anticorrelation between Ly alpha equivalent width and M(star). We compare the stellar masses and the specific SFRs (sSFRs) of LAEs with those of Lyman-break galaxies (LBGs), distant red galaxies, submillimetre galaxies, and I- or K-selected galaxies with photometric redshifts of z(phot) similar to 3. We find that the LAE population is the least massive among all the galaxy populations in question, but with relatively high sSFRs, while near-infrared (NIR)-detected LAEs have M(star) and sSFR similar to LBGs. Our reddest four LAEs have very high sSFRs in spite of large M(star), thus occupying a unique region in the M(star) versus sSFR space.
View Full Publication open_in_new
Abstract
Spitzer spectroscopy has revealed that similar or equal to 80% of submm galaxies (SMGs) are starburst (SB)-dominated in the mid-infrared. Here we focus on the remaining similar or equal to 20% that show signs of harboring powerful active galactic nuclei (AGNs). We have obtained Spitzer-InfraRed Spectrograph spectroscopy of a sample of eight SMGs that are candidates for harboring powerful AGNs on the basis of IRAC color selection (S(8 mu m)/S(4.5 mu m) > 2, i.e., likely power-law mid-infrared spectral energy distributions). SMGs with an AGN dominating (greater than or similar to 50%) their mid-infrared emission could represent the "missing link" sources in an evolutionary sequence involving a major merger. First of all, we detect polycyclic aromatic hydrocarbon (PAH) features in all of the SMGs, indicating redshifts from 2.5 to 3.4, demonstrating the power of the mid-infrared to determine redshifts for these optically faint dusty galaxies. Second, we see signs of both star formation (from the PAH features) and AGN activity (from continuum emission) in our sample: 62% of the sample are AGN-dominated in the mid-infrared with a median AGN content of 56%, compared with <30% on average for typical SMGs, revealing that our IRAC color selection has successfully singled out sources with proportionately more AGN emission than typical SB-dominated SMGs. However, we find that only about 10% of these AGNs dominate the bolometric emission of the SMG when the results are extrapolated to longer infrared wavelengths, implying that AGNs are not a significant power source to the SMG population overall, even when there is evidence in the mid-infrared for substantial AGN activity. When existing samples of mid-infrared AGN-dominated SMGs are considered, we find that S(8 mu m)/S(4.5 mu m) > 1.65 works well at selecting mid-infrared energetically dominant AGNs in SMGs, implying a duty cycle of similar to 15% if all SMGs go through a subsequent mid-infrared AGN-dominated phase in the proposed evolutionary sequence.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 268
  • Page 269
  • Page 270
  • Page 271
  • Current page 272
  • Page 273
  • Page 274
  • Page 275
  • Page 276
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026