Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    quasars
    Colloquium

    Dr. Kirsten Hall (Center for Astrophysics, Harvard University)

    The hottest phase of quasar winds revealed: excess intergalactic heating detected via the thermal Sunyaev-Zel'dovich effect

    February 17

    11:00am PST

    Photo by Karin Kim on Unsplash
    Seminar

    Tracing and Predicting the Pulse of the Terrestrial Biosphere: Plant Physiology, Earth System Models, and AI

    Ying Sun

    February 17

    1:30pm PST

    Deep ocean
    Seminar

    Is anoxia a hoax? Evidence for widespread “dark oxygen” production in Earth’s hidden ecosystems.

    Emil Ruff

    February 19

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Science
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Dark background with an illuminated coral
    Breaking News
    February 12, 2026

    10 Cool Papers | January 2026

    Piano at huntington astronomy lecture series played before event
    Breaking News
    February 12, 2026

    Carnegie Astronomy Lecture Series starts this March!

    The Yale embryo
    Breaking News
    February 10, 2026

    The Yale Embryo

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
[1] Crust and mantle discontinuities across the eastern margin of the North American craton were imaged using P to S converted phase receiver functions recorded by the Missouri to Massachusetts Broadband Seismometer Experiment. Crustal structure constrained by modeling Moho conversions and reverberations shows a variation of Moho depth from a minimum of 30 km near the Atlantic coast to depths of 44-49 km beneath the western Appalachian Province and 38-45 km beneath the Proterozoic terranes in the west. The variation in crustal thickness is substantially greater than that required for local isostasy, unless lower crustal densities are >3110 kg/m(3). In the upper mantle, Ps phases corresponding to a discontinuity at depths of 270-280 km were clearly observed beneath the eastern half of the array. Beneath the western third of the array, the receiver function stacks indicate more complex scattering, but weak Ps phases may be generated at depths of roughly 320 km. The transition between these two regions occurs across the eastern edge of the North American lithospheric keel imaged by tomography. The observed phases may be interpreted as conversions from the base of a low-velocity asthenosphere.
View Full Publication open_in_new
Abstract
The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). A principal component analysis of the sample shows that most of the sample's spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-to-ultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e. g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope, and star formation history). Consistent with our understanding of normal star-forming galaxies, the SINGS sample of galaxies in comparison to more actively star-forming galaxies exhibits a larger dispersion in the infrared-to-ultraviolet versus ultraviolet spectral slope correlation. Early-type galaxies, exhibiting low star formation rates and high optical surface brightnesses, have the most discrepant infrared-to-ultraviolet correlation. These results suggest that the star formation history may be the dominant regulator of the broadband spectral variations between galaxies. Finally, a new discovery shows that the 24 mu m morphology can be a useful tool for parameterizing the global dust temperature and ultraviolet extinction in nearby galaxies. The dust emission in dwarf/irregular galaxies is clumpy and warm accompanied by low ultraviolet extinction, while in spiral galaxies there is typically a much larger diffuse component of cooler dust and average ultraviolet extinction. For galaxies with nuclear 24 mu m emission, the dust temperature and ultraviolet extinction are relatively high compared to disk galaxies.
View Full Publication open_in_new
Abstract
The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (similar to 1/5 solar) and relative proximity (similar to 60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg(2)) including the body, wing, and tail in seven bands from 3.6 to 160 mu m using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 mu m/24 mu m ratio is somewhat lower than the average and the 70 mu m/160 mu m ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers.
View Full Publication open_in_new
Abstract
We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC ((SMC)-M-4). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 mu m features relative to the 11.3 mu m feature and weak 8.6 and 17.0 mu m features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies-namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.
View Full Publication open_in_new
Abstract
Topographic correction methods rarely consider the canopy parameter effects directly and explicitly for sloping canopies. In order to address this problem, the topographic correction method MFM-GOST2 was developed by implementing the second version of the Geometric-Optical model for Sloping Terrains (the GOST2 model) in the multiple forward mode (MFM) inversion framework. First, a look up table (LUT) was constructed by multiple forward modeling of the GOST2 model; second, the radiance of a remotely sensed image and its corresponding topographic data were used for searching potential canopy parameter combinations from the LUT; and third, the corrected radiance was determined by averaging potential radiances of horizontal canopies from the LUT according to the canopy parameter combinations. The MFM-GOST2 and twelve generally used topographic correction methods were evaluated via a case study by visual analysis, linear relationship analysis, and the rose diagram analysis. The result showed that the MFM-GOST2 method successfully removed most of the topographic effects of a subset image of the Landsat-8 image in a case study. The case study also illustrates that the rose diagram analysis is a good way to evaluate topographic corrections, but the linear relationship analysis cannot be used independently for the evaluations because the decorrelation is not a sufficient condition to determine a successful topographic correction.
View Full Publication open_in_new
Abstract
Rugged terrain distorts optical remote sensing signals, and land-cover classification and biophysical parameter retrieval over mountainous regions must account for topographic effects. Therefore, topographic correction is a prerequisite for many remote sensing applications. In this study, we proposed a semi-physically based and simple topographic correction method for vegetation canopies based on path length correction (PLC). The PLC method was derived from the solution to the classic radiative transfer equation, and the influence of terrain on the radiative transfer process within the canopy is explicitly considered, making PLC physically sound. The radiative transfer equation was simplified to make PLC mathematically simple. Near-nadir observations derived from a Landsat 8 Operational Land Imager (OLI) image covering a mountainous region and wide field-of-view observations derived from simulation using a canopy reflectance model were combined to test the PLC correction method. Multi-criteria were used to provide objective evaluation results. The performances were compared to that of five other methods: CC, SCS + C, and SE, which are empirical parameter-based methods, and SCS and DS, which are semi-physical methods without empirical parameter. All the six methods could significantly reduce the topographic effects. However, SCS showed obvious overcorrection for near-nadir observations. The correction results from D-S showed an obvious positive bias. For near-nadir observations, the performance of PLC was comparable to the well-validated parameter-based methods. For wide field-of-view observations, PLC obviously outperformed all other methods. Because of the physical soundness and mathematical simplicity, PLC provides an efficient approach to correct the terrain-induced canopy BRDF distortion and will facilitate the exploitation of multi-angular information for biophysical parameter retrieval over mountainous regions.
View Full Publication open_in_new
Ned Ruby

Ned Ruby

Visiting Scientist

Ryan McClure

Ryan McClure

Postdoctoral Fellow

Grischa Chen

Grischa Chen

Scientific Lab Manager

Lisa Rouressol

Lisa Rouressol

Graduate Student

Pagination

  • Previous page chevron_left
  • …
  • Page 270
  • Page 271
  • Page 272
  • Page 273
  • Current page 274
  • Page 275
  • Page 276
  • Page 277
  • Page 278
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026