Abstract
We present resolved images of the inner disk component around HD 141569A using the Magellan adaptive optics system with the Clio2 1-5 mu m camera, offering a glimpse of a complex system thought to be in a short evolutionary phase between protoplanetary and debris disk stages. We use a reference star along with the Karhunen-Loeve image projection (KLIP) algorithm for point-spread function subtraction to detect the disk inward to about 0.'' 24 (similar to 25 au assuming a distance of 111 pc) at high signal-to-noise ratios at L ' (3.8 mu m), Ls (3.3 mu m), and narrowband Ice (3.1 mu m). We identify an arc or spiral arm structure at the southeast extremity, consistent with previous studies. We implement forward modeling with a simple disk model within the framework of a Markov Chain Monte Carlo sampler to better constrain the geometrical attributes and photometry using our KLIP-reduced disk images. We then leverage these modeling results to facilitate a comparison of the measured brightness in each passband to find a reduction in scattered light from the disk in the Ice filter, implying significant absorption due to water ice in the dust. Additionally, our best-fit disk models exhibit peak brightness in the southwestern, back-scattering region of the disk, which we suggest to be possible evidence of 3.3 mu m polycyclic aromatic hydrocarbon emission. However, we point out the need for additional observations with bluer filters and more complex modeling to confirm these hypotheses.