Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Carnegie Science's Broad Branch Road campus in the fall with brilliant leaves
    Public Program

    Inaugural Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee at D = 32 +/- 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Si ii, C ii, and Ca ii absorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a 56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.
View Full Publication open_in_new
Thousands of galaxies flood this near-infrared image of galaxy cluster SMACS 0723. High-resolution imaging from NASA’s James Webb Space Telescope combined with a natural effect known as gravitational lensing made this finely detailed image possible. Credit: NASA, ESA, CSA, STScI
February 09, 2024
Feature Story

JWST is Alan Dressler’s dream come true

Henrique Marquez Reggiani at the Carnegie Observatories Open House
February 09, 2024
Spotlight

Postdoc Spotlight: Henrique Marquez Reggiani

Pommier Inspects Press with Joseph and Javier
February 08, 2024
Feature Story

Anne Pommier brings a new spark to Carnegie’s long-standing legacy of researching planetary interiors

Abstract
We examine the sensitivity of the seasonal cycle of heterotrophic respiration to model estimates of litterfall seasonality, herbivory, plant allocation, tissue chemistry, and land use. As a part of this analysis, we compare heterotrophic respiration models based solely on temperature and soil moisture controls (zero-order models) with models that depend on available substrate as well (first-order models). As indicators of regional and global CO2 exchange, we use maps of monthly global net ecosystem production, growing season net flux (GSNF), and simulated atmospheric CO2 concentrations from an atmospheric tracer transport model. In one first-order model, CASA, variations on the representation of the seasonal flow of organic matter from plants to heterotrophs can increase global GSNF as much as 60% (5.7 Pg C yr(-1)) above estimates obtained from a zero-order model. Under a new first-order scheme that includes separate seasonal dynamics for leaf litterfall, fine root mortality, coarse woody debris, and herbivory, we observe an increase in GSNF of 8% (0.7 Pg C yr(-1)) over that predicted by the zero-order model. The increase in seasonality of CO2 exchange in first-order models reflects the dynamics of labile litter fractions; specifically, the rapid decomposition of a pulse of labile leaf and fine root litter that enters the heterotrophic community primarily from the middle to the end of the growing season shifts respiration outside the growing season. From the perspective of a first-order model, we then explore the consequences of land use change and winter temperature anomalies on the amplitude of the seasonal cycle of atmospheric CO2. Agricultural practices that accelerate decomposition may drive a long-term increase in the amplitude, independent of human impacts on plant production. Consideration of first-order litter decomposition dynamics may also help explain year-to-year variation in the amplitude.
View Full Publication open_in_new
Abstract
In recent years, the chief approaches used to describe the terrestrial carbon sink have been either (1) inferential, based on changes in the carbon content of the atmosphere and other elements of the global carbon cycle, or (2) mechanistic, applying our knowledge of terrestrial ecology to ecosystem scale processes. In this study, the two approaches are integrated by determining the change in terrestrial properties necessary to match inferred change in terrestrial carbon storage. In addition, a useful mathematical framework is developed for understanding the important features of the terrestrial carbon sink. The Carnegie-Ames-Stanford Approach (CASA) biosphere model, a terrestrial carbon cycle model that uses a calibrated, semimechanistic net primary production model and a mechanistic plant and soil carbon turnover model, is employed to explore carbon turnover dynamics in terms of the specific features of terrestrial ecosystems that are most important for the potential development of a carbon sink and to determine the variation in net primary production (NPP) necessary to satisfy various carbon sink estimates. Given the existence of a stimulatory mechanism acting on terrestrial NPP, net ecosystem uptake is expected to be largest where NPP is high and the turnover of carbon through plants and the soil is slow. In addition, it was found that (1) long-term, climate-induced change in heterotrophic respiration is not as important in determining long-term carbon exchange as is change in NPP and (2) the terrestrial carbon sink rate is determined not by the cumulative increase in production over some pre-industrial baseline, but rather by the rate of increase in production over the industrial period.
View Full Publication open_in_new
Abstract
Testing estimates of year-to-year variation in global net primary production (NPP) poses some challenges. Large-scale, multiyear records of production are not readily available for natural systems but are for agricultural systems, We use records of agricultural yields at selected sites to test NPP estimates produced by CASA, a global-scale production model driven by both meteorological data and the satellite-derived normalized difference vegetation index (NDVI). We also test estimates produced by the Miami model, which has underlain several analyses of biosphere response to interannual changes in climate. In addition, we test estimates against tree ring data for one boreal site for which data from both coniferous and deciduous species were available. The agricultural tests demonstrate that CASA can reasonably estimate interannual variation in production. The Miami model estimates variation more poorly. However, differences in NDVI-processing algorithms substantially affect CASA's estimates of interannual variation. Of the four versions tested, the FASIR NDVI most closely reproduced yield data and showed the least correlation with changes in equatorial crossing time of the National Oceanic and Atmospheric Administration satellites, One issue raised is the source of the positive trends evident in CASA's NDVI-based estimates of global NPP. The existence of these trends is consistent with potential stimulation of terrestrial production by factors such as CO2 enrichment, N fertilization, or temperature warming, but the magnitude of the global trends seen is significantly greater than suggested by constraints imposed by atmospheric fluxes.
View Full Publication open_in_new
Abstract
We present a detailed investigation of the gross C-12 and C-13 exchanges between the atmosphere and biosphere and their influence on the delta(13)C variations in the atmosphere. The photosynthetic discrimination Delta against C-13 is derived from a biophysical model coupled to a general circulation model [Sellers et al., 1996a], where stomatal conductance and carbon assimilation are determined simultaneously with the ambient climate, The delta(13)C of the respired carbon is calculated by a biogeochemical model [Potter et al., 1993; Randerson et al., 1996] as the sum of the contributions from compartments with varying ages, The global flux-weighted mean photosynthetic discrimination is 12-16 parts per thousand, which is lower than previous estimates. Factors that lower the discrimination are reduced stomatal conductance and C-4 photosynthesis. The decreasing atmospheric delta(13)C causes an isotopic disequilibrium between the outgoing and incoming fluxes; the disequilibrium is similar to 0.33 parts per thousand for 1988. The disequilibrium is higher than previous estimates because it accounts for the lifetime of trees and for the ages rather than turnover times of the biospheric pools. The atmospheric delta(13)C signature resulting from the biospheric fluxes is investigated using a three-dimensional atmospheric tracer model. The isotopic disequilibrium alone produces a hemispheric difference of similar to 0.02 parts per thousand, in atmospheric delta(13)C, comparable to the signal from a hypothetical carbon sink of 0.5 Gt C yr(-1) into the midlatitude northern hemisphere biosphere, However, the rectifier effect, due to the seasonal covariation of CO2 fluxes and height of the atmospheric boundary layer, yields a background delta(13)C gradient of the opposite sign. These effects nearly cancel thus favoring a stronger net biospheric uptake than without the background CO2 gradient. Our analysis of the globally averaged carbon budget for the decade of the 1980s indicates that the biospheric uptake of fossil fuel CO2 is likely to be greater than the oceanic uptake; the relative proportions of the sinks cannot be uniquely determined using C-12 and C-13 alone. The land-ocean sink partitioning requires in addition, information about the land use source, isotopic disequilibrium associated with gross oceanic exchanges, as well as the fractions of C-3 and C-4 vegetation involved in the biospheric uptake.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 144
  • Page 145
  • Page 146
  • Page 147
  • Current page 148
  • Page 149
  • Page 150
  • Page 151
  • Page 152
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025