Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Carnegie Science's Broad Branch Road campus in the fall with brilliant leaves
    Public Program

    Inaugural Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Joseph Gall at the microscope
    Breaking News
    September 16, 2025

    Joseph Gall posthumously receives Golden Goose Award

    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Transiting Exoplanet Survey Satellite (TESS) mission delivers time-series photometry for millions of stars across the sky, offering a probe into stellar astrophysics, including rotation, on a population scale. However, light-curve systematics related to the satellite's 13.7 day orbit have prevented stellar rotation searches for periods longer than 13 days, putting the majority of stars beyond reach. Machine-learning methods have the ability to identify systematics and recover robust signals, enabling us to recover rotation periods up to 35 days for GK dwarfs and 80 days for M dwarfs. We present a catalog of 7245 rotation periods for cool dwarfs in the Southern Continuous Viewing Zone, estimated using convolutional neural networks. We find evidence for structure in the period distribution consistent with prior Kepler and K2 results, including a gap in 10-20 day cool-star periods thought to arise from a change in stellar spin-down or activity. Using a combination of spectroscopic and gyrochronologic constraints, we fit stellar evolution models to estimate masses and ages for stars with rotation periods. We find strong correlations between the detectability of rotation in TESS and the effective temperature, age, and metallicity of the stars. Finally, we investigate the relationships between rotation and newly obtained spot filling fractions estimated from Apache Point Observatory Galactic Evolution Experiment spectra. Field starspot filling fractions are elevated in the same temperature and period regime where open clusters' magnetic braking stalls, lending support to an internal shear mechanism that can produce both phenomena.
View Full Publication open_in_new
Abstract
Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.
View Full Publication open_in_new
Abstract
Sulfur plays a major role in martian geochemistry and sulfate minerals are important repositories of water. However, their hydration states on Mars are poorly constrained. Therefore, understanding the hydration and distribution of sulfate minerals on Mars is important for understanding its geologic, hydrologic, and atmospheric evolution as well as its habitability potential. NASA's Perseverance rover is currently exploring the Noachian-age Jezero crater, which hosts a fan-delta system associated with a paleolake. The crater floor includes two igneous units (the Seitah and Maaz formations), both of which contain evidence of later alteration by fluids including sulfate minerals. Results from the rover instruments Scanning Habitable Environments with Raman and Luminescence for Organics and Chemistry and Planetary Instrument for X-ray Lithochemistry reveal the presence of a mix of crystalline and amorphous hydrated Mg-sulfate minerals (both MgSO4 center dot[3-5]H2O and possible MgSO4 center dot H2O), and anhydrous Ca-sulfate minerals. The sulfate phases within each outcrop may have formed from single or multiple episodes of water activity, although several depositional events seem likely for the different units in the crater floor. Textural and chemical evidence suggest that the sulfate minerals most likely precipitated from a low temperature sulfate-rich fluid of moderate pH. The identification of approximately four waters puts a lower constraint on the hydration state of sulfate minerals in the shallow subsurface, which has implications for the martian hydrological budget. These sulfate minerals are key samples for future Mars sample return.
View Full Publication open_in_new
Abstract
Bacterial genome dynamics are vital for understanding the mechanisms underlying microbial adaptation, growth, and their broader impact on host phenotype. Structural variants (SVs), genomic alterations of 10 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to absence of clear reference genomes and presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing a single metagenome coassembly graph constructed from all samples in a series. The log fold change in graph coverage between subsequent samples is then calculated to call SVs that are thriving or declining throughout the series. We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, which is particularly noticeable as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between subsequent time and temperature samples, suggesting host advantage. Our innovative approach leverages raw read patterns rather than references or MAGs to include all sequencing reads in analysis, and thus provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial genome dynamics.
View Full Publication open_in_new
Abstract
The Mars 2020 Perseverance rover has examined and sampled sulfate-rich clastic rocks from the Hogwallow Flats member at Hawksbill Gap and the Yori Pass member at Cape Nukshak. Both strata are located on the Jezero crater western fan front, are lithologically and stratigraphically similar, and have been assigned to the Shenandoah formation. In situ analyses demonstrate that these are fine-grained sandstones composed of phyllosilicates, hematite, Ca-sulfates, Fe-Mg-sulfates, ferric sulfates, and possibly chloride salts. Sulfate minerals are found both as depositional grains and diagenetic features, including intergranular cement and vein- and vug-cements. Here, we describe the possibility of various sulfate phases to preserve potential biosignatures and the record of paleoenvironmental conditions in fluid and solid inclusions, based on findings from analog sulfate-rich rocks on Earth. The samples collected from these outcrops, Hazeltop and Bearwallow from Hogwallow Flats, and Kukaklek from Yori Pass, should be examined for such potential biosignatures and environmental indicators upon return to Earth.
View Full Publication open_in_new
Abstract
We present the first comprehensive study of a giant, approximate to 70 kpc-scale nebula around a radio-quiet quasar at z < 1. The analysis is based on deep integral field spectroscopy with Multi-Unit Spectroscopic Explorer of the field of HE 0238-1904, a luminous quasar at z = 0.6282. The nebula emits strongly in [O II], H ss, and [O III], and the quasar resides in an unusually overdense environment for a radio-quiet system. The environment likely consists of two groups which may be merging, and in total have an estimated dynamical mass of M-dyn approximate to 4 x10(13) to 10(14) M-circle dot. The nebula exhibits largely quiescent kinematics and irregular morphology. The nebula may arise primarily through interaction-related stripping of circumgalactic and interstellar medium (CGM/ISM) of group members, with some potential contributions from quasar outflows. The simultaneous presence of the giant nebula and a radio-quiet quasar in a rich environment suggests a correlation between such circum-quasar nebulae and environmental effects. This possibility can be tested with larger samples. The upper limits on the electron number density implied by the [O II] doublet ratio range from log( n e,[O II]/cm(-3)) < 1.2 to 2.8. However, assuming a constant quasar luminosity and negligible projection effects, the densities implied from the measured line ratios between different ions (e.g. [O II], [O III], and [Ne V]) and photoionization simulations are often 10-400 times larger. This large discrepancy can be explained by quasar variability on a time-scale of approximate to 10(4)-10(5) yr.
View Full Publication open_in_new
Huiqiao Pan talks to students about soybeans for a BioEYES outreach activity
February 16, 2024
Spotlight

Postdoc Spotlight: Huiqiao Pan

Patterns of blue and green sea water blooms. Colorful splash green, blue, milky turquoise waters. Aerial view diatoms phytoplankton. Ink in water. Abstract background.
February 15, 2024
Press Release

New model successfully connects large-scale ecological patterns with microscopic biology

Abstract
Application of the best available science to improve quantification of greenhouse gas (GHG) emissions at regional and national scales is key to climate action. Here, we present a two-decade (2000-2019) GHG (CO2, CH4, and N2O) budget for Mexico derived from multiple products. Data from the National GHG Inventory, global observations, and the scientific literature were compared to identify knowledge gaps on GHG flux dynamics and discrepancies among estimates. Total mean annual GHG emissions were estimated at 695-910 TgCO2-eq year-1 over these two decades, with 70% of the emissions attributable to CO2, 23% to CH4, and 5% to N2O (2% to other gases). When divided by sectors, we found agreement across emission estimates from various sources for fossil fuels, cattle, agriculture, and waste for all GHGs. However, considerable discrepancies were identified in the fluxes from terrestrial ecosystems. The disagreement was particularly large for the land CO2 sink, where net biome production estimations from the national inventory were double those from any other observational product. Extensive knowledge gaps exist, mainly related to aquatic systems (e.g., outgassing in rivers) and the lateral fluxes (e.g., wood trade). In addition, limited information is available on CH4 emissions from wetlands and soil CH4 consumption. We expect these results to guide future research to reduce estimation uncertainties and fill the information gaps across Mexico.
View Full Publication open_in_new
Abstract
Understanding new mechanisms for phase transformation in carbon is of considerable interest. This study investigates on the compression conditions required to create recoverable diamond during room-temperature high-pressure compression of glassy carbon. Under non-hydrostatic compression conditions when shear is present, glassy carbon transforms into an oriented graphitic structure at similar to 45 GPa, and then forms mixed diamond and lonsdaleite nanocrystals when the pressure is higher than similar to 80 GPa. In contrast, during hydrostatic compression no significant changes in the microstructure was observed, highlighting glassy carbon's resilience under compression. Molecular dynamics modelling supports the proposed model that shear drives the phase transition mechanism and causes a temperature spike that drives crystallisation. Our work demonstrates that shear is key to high-pressure diamond formation in the absence of heating.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 142
  • Page 143
  • Page 144
  • Page 145
  • Current page 146
  • Page 147
  • Page 148
  • Page 149
  • Page 150
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025