Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Carnegie Science's Broad Branch Road campus in the fall with brilliant leaves
    Public Program

    Inaugural Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

The sun shines on the horizon of Earth, as viewed from space.
February 05, 2024
Awards

Lab manager and technician selected for annual Service to Science Award

Abstract
We report C, N, Si, and Al-Mg isotope data for 39 presolar X silicon carbide (SiC) and four silicon nitride grains-a group of presolar grains that condensed in the remnants of core-collapse Type II supernovae (CCSNe)-isolated from the Murchison meteorite. Energy dispersive X-ray data were used to determine the Mg and Al contents of the X SiC grains for comparison with the Mg/Al ratios determined by secondary ion mass spectroscopy (SIMS). Previous SIMS studies have used O-rich standards in the absence of alternatives. In this study, the correlated isotopic and elemental data of the X SiC grains enabled accurate determination of the initial 26Al/27Al ratios for the grains. Our new grain data suggest that (i) the literature data for X grains are affected to varying degrees by asteroidal/terrestrial contamination, and (ii) the Al/Mg ratios in SiC are a factor of 2 (with +/- 6% 1 sigma uncertainties) lower than estimated based on the SIMS analyses that used O-rich standards. The lowered Al/Mg ratios result in proportionally higher inferred initial 26Al/27Al ratios for presolar SiC grains. In addition, the suppression of asteroidal/terrestrial contamination in this study leads to the observation of negative trends for 12C/13C-30Si/28Si and 26Al/27Al-30Si/28Si among our CCSN grains. We discuss these isotope trends in the light of explosive CCSN nucleosynthesis models, based on which we provide new insights into several nontraditional CCSN nucleosynthesis processes, including explosive H burning, the existence of a C/Si zone in the outer regions of CCSNe, and neutrino-nucleus reactions in deep CCSN regions.
View Full Publication open_in_new
Abstract
Lake trophic state is a key ecosystem property that integrates a lake's physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible, robust methods across time and space. We used Landsat surface reflectance data to create the first compendium of annual lake trophic state for 55,662 lakes of at least 10 ha in area throughout the contiguous United States from 1984 through 2020. The dataset was constructed with FAIR data principles (Findable, Accessible, Interoperable, and Reproducible) in mind, where data are publicly available, relational keys from parent datasets are retained, and all data wrangling and modeling routines are scripted for future reuse. Together, this resource offers critical data to address basic and applied research questions about lake water quality at a suite of spatial and temporal scales.
View Full Publication open_in_new
Abstract
We present the first comprehensive study of a giant, approximate to 70 kpc-scale nebula around a radio-quiet quasar at z<1. The analysis is based on deep integral field spectroscopy with MUSE of the field of HE0238-1904, a luminous quasar at z=0.6282. The nebula emits strongly in [OII], H beta, and [OIII], and the quasar resides in an unusually overdense environment for a radio-quiet system. The environment likely consists of two groups which may be merging, and in total have an estimated dynamical mass of M-dyn approximate to 4x10(13) to 10(14) M-circle dot. The nebula exhibits largely quiescent kinematics and irregular morphology. The nebula may arise primarily through interaction-related stripping of circumgalactic and interstellar medium (CGM/ISM) of group members, with some potential contributions from quasar outflows. The simultaneous presence of the giant nebula and a radio-quiet quasar in a rich environment suggests a correlation between such circum-quasar nebulae and environmental effects. This possibility can be tested with larger samples. The upper limits on the electron number density implied by the [OII] doublet ratio range from log(ne,[OII]/cm(-3))<1.2 to 2.8. However, assuming a constant quasar luminosity and negligible projection effects, the densities implied from the measured line ratios between different ions (e.g., [OII], [OIII], and [NeV]) and photoionization simulations are often 10-400 times larger. This large discrepancy can be explained by quasar variability on a timescale of approximate to 10(4)-10(5) years.
View Full Publication open_in_new
CASSI poster presentations
February 02, 2024
Awards

Four Observatories summer interns recognized for exemplary student research

Barbara McClintock working with maize in the lab.
February 08, 2024
Feature Story

Interview: Nina Fedoroff on Barbara McClintock

Abstract
(Mg, Fe, Al)(Si, Al)O3 bridgmanite is the most abundant mineral of Earth ' s lower mantle. Al is incorporated in the crystal structure of bridgmanite through the Fe3+AlO3 and AlAlO3 charge coupled (CC) mechanisms, and the MgAlO2.5 oxygen vacancy (OV) mechanism. Oxygen vacancies are believed to cause a substantial decrease of the bulk modulus of aluminous bridgmanite based on first-principles calculations on the MgAlO2.5 end-member. However, there is no conclusive experimental evidence supporting this hypothesis due to the uncertainties on the chemical composition, crystal chemistry, and/or high-pressure behavior of samples analyzed in previous studies. Here, we synthesized high-quality single crystals of bridgmanite in the MgO-AlO1.5-SiO2 system with different bulk Al contents and degrees of CC and OV substitutions. Suitable crystals with different compositions were loaded in resistively heated diamond anvil cells and analyzed by synchrotron X-ray diffraction at pressures up to approximately 80 GPa at room temperature and 35 GPa at temperatures up to 1,000 K. Single-crystal structural refinements at high pressure show that the compressibility of bridgmanite is mainly controlled by Al-Si substitution in the octahedral site and that oxygen vacancies in bridgmanite have no detectable effect on the bulk modulus in the compositional range investigated here, which is that relevant to a pyrolytic lower mantle. The proportion of oxygen vacancies in Al-bearing bridgmanite has been calculated using a thermodynamic model constrained using experimental data at 27 GPa and 2,000 K for an Fe-free system and extrapolated to pressures equivalent to 1,250 km depth using the thermoelastic parameters of Al-bearing bridgmanite determined in this study.
View Full Publication open_in_new
Abstract
Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.e., microenergy-dispersive X-ray fluorescence (micro-XRF) and Raman micro-spectroscopy. The applicability of the developed method is tested by the quantitative analysis of cation composition in micrometer-sized carbonate grains on the surfaces of intact particles sampled directly from the asteroid Ryugu. The first step of micro-XRF imaging enabled a quick search for the sparsely scattered and micrometer-sized carbonates by the codistributions of Ca2+ and Mn2+ on the Mg2+- and Fe2+-rich phyllosilicate matrix. The following step of Raman micro-spectroscopy probed the carbonate grains and analyzed their cation composition (Ca2+, Mg2+, and Fe2+ + Mn2+) in a matrix effect-free manner via the systematic Raman shifts of the lattice modes. The carbonates were basically assigned to ferroan dolomite bearing a considerable amount of Fe2+ + Mn2+ at around 10 atom %. These results are in good accordance with the assignments reported by scanning electron microscopy-energy-dispersive X-ray spectroscopy, where the thin-sectioned and surface-polished Ryugu particles were applicable. The proposed method requires neither sectioning nor surface polishing; hence, it can be applied to the remote sensing apparatus on spacecrafts and planetary rovers. Furthermore, the non-invasive and matrix effect-free characterization will provide a reliable analytical tool for quantitative analysis of the elemental distribution on the samples with surface roughness and chemical heterogeneity at a micrometer scale, such as art paintings, traditional crafts with decorated shapes, as well as sands and rocks with complex morphologies in nature.
View Full Publication open_in_new
Abstract
C-type asteroids are the presumed home to carbonaceous chondrites, some of which contain abundant life forming volatiles and organics. For the first time, samples from a C-type asteroid (162173 Ryugu) were successfully returned to Earth by JAXA's Hayabusa2 mission. These pristine samples, uncontaminated by the terrestrial environment, allow a direct comparison with carbonaceous chondrites. This study reports the stable K isotopic compositions (expressed as 841K) of Ryugu samples and seven carbonaceous chondrites to constrain the origin of K isotopic variations in the early Solar System. Three aliquots of Ryugu particles collected at two touchdown sites have identical 841K values, averaged at-0.194 +/- 0.038%o (2SD). The K isotopic composition of Ryugu falls within the range of 841K values measured on representative CI chondrites, and together, they define an average 841K value of-0.185 +/- 0.078%o (2SE), which provides the current best estimate of the K isotopic composition of the bulk Solar System. Samples of CI chondrites with 841K values that deviate from this range likely reflect terrestrial contaminations or compositional heterogeneities at sampled sizes. In addition to CI chondrites, substantial K isotopic variability is observed in other carbonaceous chondrites and within individual chondritic groups, with 841K values inversely correlated with K abundances in many cases. These observations indicate widespread fluid activity occurred in chondrite parent bodies, which significantly altered the original K abundances and isotopic compositions of chondrules and matrices established at their accretion.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 147
  • Page 148
  • Page 149
  • Page 150
  • Current page 151
  • Page 152
  • Page 153
  • Page 154
  • Page 155
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025