Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

    JWST image
    Colloquium

    Prof. Harley Katz (University of Chicago)

    The Spectral Revolution at Cosmic Dawn: Interpreting High-Redshift JWST Observations with Next-Generation Models

    February 10

    11:00am PST

    Lava exoplanet
    Seminar

    Kaustav Das (Caltech)

    TBD

    February 13

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    The dome of one of Las Campanas Observatories' twin Magellan telescopes in movement. Credit: Yuri Beletsky/Carnegie Science
    Breaking News
    December 31, 2026

    Instrumentation Keeps Carnegie Astronomers at the Cutting Edge

    Lori Willhite Headsot
    Breaking News
    February 03, 2026

    Lori Willhite brings EPL's mass spec lab into the future

    Jennifer Kasbohm & Andrea Giuliani
    Breaking News
    February 02, 2026

    Geochronology: Decoding Earth’s Past to Shape Its Future

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Chloroflexus sp. MS-CIW-1 was isolated from a phototrophic mat in Mushroom Spring, an alkaline hot spring in Yellowstone National Park, WY, USA. We report the draft genome of 4.8 Mb consisting of 6 contigs with 3755 protein-coding genes and a GC content of 54.45%.
View Full Publication open_in_new
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
View Full Publication open_in_new
Abstract
Anaerobic digestion is a bioenergy technology that can play a vital role in achieving net-zero emissions by converting organic matter into biomethane and biogenic carbon dioxide. By implementing bioenergy with carbon capture and storage (BECCS), carbon dioxide can be separated from biomethane, captured, and permanently stored, thus generating carbon dioxide removal (CDR) to offset hard-to-abate emissions. Here, we quantify the global availability of waste biomass for BECCS and their CDR and biomethane technical potentials. These biomass feedstocks do not create additional impacts on land, water, and biodiversity and can allow a more sustainable development of BECCS while still preserving soil fertility. We find that up to 1.5 Gt CO2 per year, or 3% of global GHG emissions, are available to be deployed for CDR worldwide. The conversion of waste biomass can generate up to 10 700 TWh of bioenergy per year, equivalent to 10% of global final energy consumption and 27% of global natural gas supply. Our assessment quantifies the climate mitigation potential of waste biomass and its capacity to contribute to negative emissions without relying on extensive biomass plantations.
View Full Publication open_in_new
Abstract
Trait differences between invasive plants and the plants in their recipient communities moderate the impact of invaders on community composition. Callery pear (Pyrus calleryana Decne.) is a fast-growing, stress-tolerant tree native to China that has been widely planted for its ornamental value. In recent decades, P. calleryana has naturalized throughout the eastern United States, where it spreads rapidly and achieves high abundance in early-successional environments. Here we compare the impacts of low-density, establishment-phase P. calleryana to those of functionally similar native trees on the understory community diversity and total cover of three early-successional meadows in Indiana's Eastern Corn Belt Plains. In contrast to our prediction that P. calleryana would have greater negative effects on the total abundance and diversity of the understory plant community compared with native tuliptree (Liriodendron tulipifera L.), American sycamore (Platanus occidentalis L.), or non-tree control plots, we found that these low-density populations of P. calleryana had no significant impact on total cover, species richness, or diversity indices for the understory community compared with the native trees and non-tree control plots. Likewise, the studied populations of P. calleryana had no significant impact on the native, introduced, woody, or native tree subsets of the understory community. These results indicate that in young, low-density populations situated in early-successional meadows, the trait differences between P. calleryana and functionally similar native trees are not of a great enough magnitude to produce changes in community composition. Going forward, complementary research on the impacts of P. calleryana on community composition and ecosystem processes in areas with long-established, dense invasions or invasions in more sensitive ecosystems would allow us to more fully understand how this widespread invader disrupts its host ecosystems.
View Full Publication open_in_new
Abstract
We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity of vsys=-31.5-1.2+1.3kms-1 , and velocity dispersion sigma v=6.1-0.9+1.2kms-1 . Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of [Fe/H]=-2.87-0.07+0.08 , and resolve a dispersion of sigma [Fe/H]=0.20 +/- 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocity v sys = 44.9 +/- 0.8 km s-1, and velocity dispersion sigma v=4.2-0.5+0.6kms-1 . We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = -2.57 +/- 0.08, and metallicity dispersion sigma[Fe/H]=0.38-0.05+0.07 . We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up.
View Full Publication open_in_new
Abstract
We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee at D = 32 +/- 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Si ii, C ii, and Ca ii absorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a 56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.
View Full Publication open_in_new
Thousands of galaxies flood this near-infrared image of galaxy cluster SMACS 0723. High-resolution imaging from NASA’s James Webb Space Telescope combined with a natural effect known as gravitational lensing made this finely detailed image possible. Credit: NASA, ESA, CSA, STScI
February 09, 2024
Feature Story

JWST is Alan Dressler’s dream come true

Henrique Marquez Reggiani at the Carnegie Observatories Open House
February 09, 2024
Spotlight

Postdoc Spotlight: Henrique Marquez Reggiani

Pommier Inspects Press with Joseph and Javier
February 08, 2024
Feature Story

Anne Pommier brings a new spark to Carnegie’s long-standing legacy of researching planetary interiors

Pagination

  • Previous page chevron_left
  • …
  • Page 149
  • Page 150
  • Page 151
  • Page 152
  • Current page 153
  • Page 154
  • Page 155
  • Page 156
  • Page 157
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026