Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Pseudomonas aeruginosa is a significant threat in healthcare settings where it deploys a wide host of virulence factors to cause disease. Many virulence-related phenotypes such as pyocyanin production, biofilm formation, and twitching motility have been implicated in causing disease in a number of hosts. In this study, we investigate these three virulence factors in a collection of 22 clinical strains isolated from blood stream infections. Despite the fact that all 22 strains caused disease and came from the same body site of different patients, they show significant variability in assays for each of the three specific phenotypes examined. There was no significant correlation between the strength of the three phenotypes across our collection, suggesting that they can be independently modulated. Furthermore, strains deficient in each of the virulence-associated phenotypes examined could be identified. To understand the genetic basis of this variability we sequenced the genomes of the 22 strains. We found that the majority of genes responsible for pyocyanin production, biofilm formation, and twitching motility were highly conserved among the strains despite their phenotypic variability, suggesting that the phenotypic variability is likely due to regulatory changes. Our findings thus demonstrate that no one lab-assayed phenotype of pyocyanin production, biofilm production, and twitching motility is necessary for a P. aeruginosa strain to cause blood stream infection and that additional factors may be needed to fully predict what strains will lead to specific human diseases.
View Full Publication open_in_new
Abstract
In this paper, using the fully coupled NCAR Community Earth System Model (CESM1.0.4), we investigate the relative importance of CO2-fertilization, climate warming, anthropogenic nitrogen deposition, and land use and land cover change (LULCC) for terrestrial carbon uptake during the historical period (1850-2005). In our simulations, between the beginning and end of this period, we find an increase in global net primary productivity (NPP) on land of about 4 PgCyr(-1) (8.2 %) with a contribution of 2.3 PgCyr(-1) from CO2-fertilization and 2.0 PgCyr(-1) from nitrogen deposition. Climate warming also causes NPP to increase by 0.35 PgCyr(-1) but LULCC causes a decline of 0.7 PgCyr(-1). These results indicate that the recent increase in vegetation productivity is most likely driven by CO2 fertilization and nitrogen deposition. Further, we find that this configuration of CESM projects that the global terrestrial ecosystem has been a net source of carbon during 1850-2005 (release of 45.1 +/- 2.4 PgC), largely driven by historical LULCC related CO2 fluxes to the atmosphere. During the recent three decades (early 1970s to early 2000s), however, our model simulations project that the terrestrial ecosystem acts as a sink, taking up about 10 PgC mainly due to CO2 fertilization and nitrogen deposition. Our results are in good qualitative agreement with recent studies that indicate an increase in vegetation production and water use efficiency in the satellite era and that the terrestrial ecosystem has been a net sink for carbon in recent decades.
View Full Publication open_in_new
Abstract
Evidence from the 100-most cited papers ever published in ERL indicates the disproportionately large scientific impact of small groups of authors. The median number of authors on these 100 most-cited papers was 3.5, and 72 out of the 100 most cited papers had 5 or fewer authors. This indicates that small groups of authors often produce the work with the greatest impact, even in an inter-disciplinary setting. This suggests that it may be wise to institute policy changes that discourage inflation of author lists and that encourage the funding of research conducted by single investigators and small groups of researchers.
View Full Publication open_in_new
Abstract
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO(2) were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6 degrees C) and lowest diel ranges (0.9 - 3.2 degrees C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
View Full Publication open_in_new
Abstract
In most climate models, after an abrupt increase in radiative forcing the climate feedback parameter magnitude decreases with time. We demonstrate how the evolution of the pattern of ocean heat uptake-moving from a more homogeneous toward a heterogeneous and high-latitude-enhanced pattern-influences not only regional but also global climate feedbacks. We force a slab ocean model with scaled patterns of ocean heat uptake derived from a coupled ocean-atmosphere general circulation model. Steady state results from the slab ocean approximate transient results from the dynamic ocean configuration. Our results indicate that cloud radiative effects play an important role in decreasing the magnitude of the climate feedback parameter. The ocean strongly affects atmospheric temperatures through both heat uptake and through influencing atmospheric feedbacks. This highlights the challenges associated with reliably predicting transient or equilibrated climate system states from shorter-term climate simulations and observed climate variability.
View Full Publication open_in_new
Abstract
Earth's Future invited "leading experts in the field of geoengineering research to contribute brief reflections (2-5 pages) on the development of the discussion over the past decade and to consider where it may be going in the next 10 years." Responding to this request, we offer the following text in the spirit of reflections that emphasize our personal roles and viewpoints. The primary focus of many of our comments is solar geoengineering and not carbon dioxide removal (CDR). Thus, this text is not intended to comprise a comprehensive review or set of carefully documented analyses. Our primary conclusion is that sustained progress in "geoengineering" research will depend on social and material support for experimental work that can provide the observational basis for improved modeling and analysis, and, potentially, development and deployment of systems that may help protect the environment and improve human well-being. Relevant issues, and potential future trajectories, for CDR technologies may differ dramatically from those for solar geoengineering technologies.
View Full Publication open_in_new
Abstract
Previous studies have estimated global available potential energy (APE) and global APE generation, but no study has focused on the geographic distribution of contributions to global APE and APE generation. To obtain the information needed for this analysis, simulations were performed using the NCAR CESM1.0.4 climate model. Based on these simulation results, maps of the spatial and seasonal distribution of APE contributions and APE generation in the atmosphere were obtained from the analysis. APE is generated by processes that cool relatively cool areas or warm relatively warm areas. It was found that there are two regions of the mid-to upper troposphere that contribute primarily to APE generation: 1) the tropics, especially the western tropical Pacific, owing largely to latent heat released in the intertropical convergence zone, and 2) the polar regions, especially in the relatively cold polar night, where longwave cooling is not offset by shortwave warming. It was also found that these qualitative results are largely insensitive to the assumptions examined regarding the treatment of topography in the atmosphere. Further, the analysis was extended to calculate how APE and APE generation is changed in a 4 x CO2 climate relative to a 1 x CO2 climate. It was found that in the high-CO2 climate, APE decreased by 7.0% and APE generation decreased by 10.1%. This is consistent with expectations based on decreased equator-to-pole temperature gradients in warmer climates. The methods, results, and analysis presented here should prove useful in helping to build a better understanding of controls on atmospheric kinetic energy.
View Full Publication open_in_new
Abstract
Integrated assessment models are commonly used to generate optimal carbon prices based on an objective function that maximizes social welfare. Such models typically project an initially low carbon price that increases with time. This framework does not reflect the incentives of decision makers who are responsible for generating tax revenue. If a rising carbon price is to result in near-zero emissions, it must ultimately result in near-zero carbon tax revenue. That means that at some point, policy makers will be asked to increase the tax rate on carbon emissions to such an extent that carbon tax revenue will fall. Therefore, there is a risk that the use of a carbon tax to generate revenue could eventually create a perverse incentive to continue carbon emissions in order to provide a continued stream of carbon tax revenue. Using the Dynamic Integrated Climate Economy (DICE) model, we provide evidence that this risk is not a concern for the immediate future but that a revenue-generating carbon tax could create this perverse incentive as time goes on. This incentive becomes perverse at about year 2085 under the default configuration of DICE, but the timing depends on a range of factors including the cost of climate damages and the cost of decarbonizing the global energy system. While our study is based on a schematic model, it highlights the importance of considering a broader spectrum of incentives in studies using more comprehensive integrated assessment models. Our study demonstrates that the use of a carbon tax for revenue generation could potentially motivate implementation of such a tax today, but this source of revenue generation risks motivating continued carbon emissions far into the future.
View Full Publication open_in_new
Abstract
Adaptation is the process of adjusting to climate change in order to moderate harm or exploit beneficial opportunities associated with it. Most adaptation strategies are designed to adjust to a new climate state. However, despite our best efforts to curtail greenhouse gas emissions, climate is likely to continue changing far into the future. Here, we show how considering rates of change affects the projected optimal adaptation strategy. We ground our discussion with an example of optimal investment in the face of continued sea-level rise, presenting a quantitative model that illustrates the interplay among physical and economic factors governing coastal development decisions such as rate of sea-level rise, land slope, discount rate, and depreciation rate. This model shows that the determination of optimal investment strategies depends on taking into account future rates of sea-level rise, as well as social and political constraints. This general approach also applies to the development of improved strategies to adapt to ongoing trends in temperature, precipitation, and other climate variables. Adaptation to some amount of change instead of adaptation to ongoing rates of change may produce inaccurate estimates of damages to the social systems and their ability to respond to external pressures.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 668
  • Page 669
  • Page 670
  • Page 671
  • Current page 672
  • Page 673
  • Page 674
  • Page 675
  • Page 676
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025