Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present observations of the HD 15115 debris disk from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that capture this intriguing system with the highest resolution (0 ''.6 or 29 au) at millimeter wavelengths to date. This new ALMA image shows evidence for two rings in the disk separated by a cleared gap. By fitting models directly to the observed visibilities within a Markov Chain Monte Carlo framework, we are able to characterize the millimeter continuum emission and place robust constraints on the disk structure and geometry. In the best-fit model of a power-law disk with a Gaussian gap, the disk inner and outer edges are at 43.9 +/- 5.8 au (0 ''.89 +/- 0 ''.12) and 92.2 +/- 2.4 au (1 ''.88 +/- 0 ''.49), respectively, with a gap located at 58.9 +/- 4.5 au (1 ''.2 +/- 0 ''.10) with a fractional depth of 0.88 +/- 0.10 and a width of 13.8 +/- 5.6 au (0 ''.28 +/- 0 ''.11). Because we do not see any evidence at millimeter wavelengths for the dramatic east-west asymmetry seen in scattered light, we conclude that this feature most likely results from a mechanism that only affects small grains. Using dynamical modeling and our constraints on the gap properties, we are able to estimate a mass for the possible planet sculpting the gap to be 0.16 +/- 0.06 M-Jup.
View Full Publication open_in_new
Abstract
Both the vibrational and electrical transport properties of 2H-TaS2 have been investigated at high pressures and low temperatures. The collapse of the charge-density-wave order at pressures above 7.3 GPa has been verified by Raman scattering, resistivity, and Hall coefficient measurements. For pressures above the critical pressure of 7.3 GPa, the superconducting transition temperature continues to increase and reaches its maximum value at 11.5 GPa, suggesting that it is not a simple competition between the charge-density-wave order and superconductivity. Through the standard resistivity fit in the normal state, the decline of the superconducting transition temperature with increasing pressure up to 47.0 GPa is due to the decrease of interaction strength and the increase of the impurity scattering. These results are very important in understanding the superconducting mechanism of transition-metal dichalcogenides.
View Full Publication open_in_new
Abstract
Hydrogen is expected to display remarkable properties under extreme pressures and temperatures stemming from its low mass and thus propensity to quantum phenomena. Exploring such phenomena remains very challenging even though there was a tremendous technical progress both in experimental and theoretical techniques since the last comprehensive review (McMahon et al.) was published in 2012. Raman and optical spectroscopy experiments including infrared have been extended to cover a broad range of pressures and temperatures (P-T) probing phase stability and optical properties at these conditions. Novel pulsed laser heating and toroidal diamond anvil techniques together with diamond anvil protecting layers drastically improved the capabilities of static compression methods. The electrical conductivity measurements have been also performed to much higher than previously pressures and extended to low temperatures. The dynamic compression techniques have been dramatically improved recently enabling ramp isentropic compression that allows probing a wide range of P-T thermodynamic pathways. In addition, new theoretical methods have been developed beyond a common DFT theory, which make them predictive and in better agreement with experiments. With the development of new theoretical and experimental tools and sample loading methods, the quest for metallic hydrogen accelerated recently delivering a wealth of new data, which are reviewed here. Published under license by AIP Publishing.
View Full Publication open_in_new
Abstract
Gas has been detected in a number of debris disks. It is likely secondary, i.e., produced by colliding solids. Here, we report ALMA Band 8 observations of neutral carbon in the CO-rich debris disk around the 15-30 Myr old A-type star HD 32297. We find that C-0 is located in a ring at similar to 110 au with an FWHM of similar to 80 au and has a mass of (3.5 0.2) x 10(-3) M-circle plus. Naively, such a surprisingly small mass can be accumulated from CO photodissociation in a time as short as similar to 10(4) yr. We develop a simple model for gas production and destruction in this system, properly accounting for CO self-shielding and shielding by neutral carbon, and introducing a removal mechanism for carbon gas. We find that the most likely scenario to explain both C-0 and CO observations is one where the carbon gas is rapidly removed on a timescale of order a thousand years and the system maintains a very high CO production rate of similar to 15 M-circle plus Myr(-1), much higher than the rate of dust grind-down. We propose a possible scenario to meet these peculiar conditions: the capture of carbon onto dust grains, followed by rapid CO re-formation and rerelease. In steady state, CO would continuously be recycled, producing a CO-rich gas ring that shows no appreciable spreading over time. This picture might be extended to explain other gas-rich debris disks.
View Full Publication open_in_new
Abstract
The Large Binocular Telescope Interferometer (LBTI) enables nulling interferometric observations across the N band (8 to 13 mu m) to suppress a star's bright light and probe for faint circumstellar emission. We present and statistically analyze the results from the LBTI/Hunt for Observable Signatures of Terrestrial Systems survey for exozodiacal dust. By comparing our measurements to model predictions based on the solar zodiacal dust in the N band, we estimate a 1 sigma median sensitivity of 23 zodis times the solar system dust surface density in its habitable zone (HZ; 23 zodis) for early-type stars and 48 zodis for Sun-like stars, where 1 zodi is the surface density of HZ dust in the solar system. Of the 38 stars observed, 10 show significant excess. A clear correlation of our detections with the presence of cold dust in the systems was found, but none with the stellar spectral type or age. The majority of Sun-like stars have relatively low HZ dust levels (best-fit median: 3 zodis, 1 sigma upper limit: 9 zodis, 95% confidence: 27 zodis based on our N band measurements), while similar to 20% are significantly more dusty. The solar system's HZ dust content is consistent with being typical. Our median HZ dust level would not be a major limitation to the direct imaging search for Earth-like exoplanets, but more precise constraints are still required, in particular to evaluate the impact of exozodiacal dust for the spectroscopic characterization of imaged exo-Earth candidates.
View Full Publication open_in_new
Abstract
Polymeric nitrogen at 120 GPa-180 GPa is known in two monatomic crystalline cubic gauche (cg-N) and layered polymeric (LP-N) phases and one amorphous modification (eta -N), and all these high-pressure phases attract considerable attention for their potential application as a high energy density material. Here, we investigated the stability of these modifications at high pressures in the laser heated diamond anvil cell upon decompression from 161 GPa. Pure LP-N was synthesized above 152 GPa upon laser heating of eta -N to 2500 K, while cg-N forms below 150 GPa. Upon laser heating at 129 GPa and 123 GPa, the LP-N clearly diminished, indicating that the synthesis of cg-N becomes more favorable in a mixed phase region below 129 GPa. Upon unloading, cg-N and LP-N were metastable to at least 71 GPa at up to 2500 K and at room temperature, respectively. These observations clarified a complicated polymorphism of monatomic nitrogen at high pressures and large hysteretic phenomena related to a transition to nonmolecular nitrogen.
View Full Publication open_in_new
Abstract
As part of our search for new low-mass members of nearby young moving groups (YMGs), we discovered three low-mass, spectroscopic binaries, two of which are not kinematically associated with any known YMG. Using high-resolution optical spectroscopy, we measure the component and systemic radial velocities of the systems, as well as their lithium absorption and H alpha emission, both spectroscopic indicators of youth. One system (2MASS J02543316-5108313, M2.0+M3.0) we confirm as a member of the 40 Myr old Tuc-Hor moving group, but whose binarity was previously undetected. The second young binary (2MASS J08355977-3042306, K5.5+M1.5) is not a kinematic match to any known YMG, but each component exhibits lithium absorption and strong and wide H alpha emission indicative of active accretion, setting an upper age limit of 15 Myr. The third system (2MASS J10260210-4105537, M1.0+M3.0) has been hypothesized in the literature to be a member of the 10 Myr old TW Hya Association, but our measured systemic velocity shows the binary is in fact not part of any known YMG. This last system also has lithium absorption in each component, and has strong and variable H alpha emission, setting an upper age limit of 15 Myr based on the lithium detection.
View Full Publication open_in_new
Abstract
Raman and optical spectroscopy are versatile tools for nondestructive characterization of a wide range of properties of novel materials and minerals in situ at extreme and ambient conditions. These techniques are genuinely complementary to X-ray tools (diffraction and spectroscopy) in the probe energy, momentum transfer, and time scale, making concomitant X-ray and optical probes available for advanced sample analysis. We have built a state-of-the-art, user-friendly integrated Raman and optical spectroscopy system at Sector 13 (GeoSoilEnviroCARS, University of Chicago, IL) of the Advanced Photon Source (APS), Argonne National Laboratory (ANL), where optical probes are available now in combination with high resolution in-situ synchrotron X-ray diffraction and spectroscopy tools (XRD, IXS, XES, NFS, and others) for extensive sample investigation. The integrated optical system enables a variety of techniques including multi-colored (five laser lines: 266, 473, 532, 660, and 946 nm) confocal Raman, fluorescence, and optical spectroscopy from ultraviolet (UV) to near infrared (IR) spectral ranges (266-1600 nm), and Coherent Anti-Stokes Raman spectroscopy (CARS) in combination with near IR double sided laser heating.
View Full Publication open_in_new
Abstract
We quantitatively investigate the contribution of large dust particles to the polarimetric response in comets using the light-scattering properties of model agglomerated debris particles. We demonstrate that large, supermicron-sized particles have a decreasing role on the degree of linear polarization at phase angle alpha <= 80 degrees, and the effect of particles greater than 10 mu m is minimal. At larger phase angles, they may only slightly increase the measured percent of polarization by up to 1%. Omitting the effects of these particles in modeling the observations only slightly affects the retrievals of the microphysical properties of dust in comets and could lead to a small underestimation of the index in a power-law size distribution and population of weakly absorbing dust particles.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 659
  • Page 660
  • Page 661
  • Page 662
  • Current page 663
  • Page 664
  • Page 665
  • Page 666
  • Page 667
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025