Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Immersion GRating INfrared Spectrometer (IGRINS) was designed for high-throughput with the expectation of being a visitor instrument at progressively larger observing facilities. IGRINS achieves R similar to 45000 and > 20,000 resolution elements spanning the H and K bands (1.45-2.5 mu m) by employing a silicon immersion grating as the primary disperser and volume-phase holographic gratings as cross-dispersers. After commissioning on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory, the instrument had more than 350 scheduled nights in the first two years. With a fixed format echellogram and no cryogenic mechanisms, spectra produced by IGRINS at different facilities have nearly identical formats. The first host facility for IGRINS was Lowell Observatory's 4.3-meter Discovery Channel Telescope (DCT). For the DCT a three-element fore-optic assembly was designed to be mounted in front of the cryostat window and convert the f/6.1 telescope beam to the f/8.8 beam required by the default IGRINS input optics. The larger collecting area and more reliable pointing and tracking of the DCT improved the faint limit of IGRINS, relative to the McDonald 2.7-meter, by similar to 1 magnitude. The Gemini South 8.1-meter telescope was the second facility for IGRINS to visit. The focal ratio for Gemini is f/16, which required a swap of the four-element input optics assembly inside the IGRINS cryostat. At Gemini, observers have access to many southern-sky targets and an additional gain of similar to 1.5 magnitudes compared to IGRINS at the DCT. Additional adjustments to IGRINS include instrument mounts for each facility, a glycol cooled electronics rack, and software modifications. Here we present instrument modifications, report on the success and challenges of being a visitor instrument, and highlight the science output of the instrument after four years and 699 nights on sky. The successful design and adaptation of IGRINS for various facilities make it a reliable forerunner for GMTNIRS, which we now anticipate commissioning on one of the 6.5 meter Magellan telescopes prior to the completion of the Giant Magellan Telescope.
View Full Publication open_in_new
Abstract
Diatomic nitrogen is an archetypal molecular system known for its exceptional stability and complex behavior at high pressures and temperatures, including rich solid polymorphism, formation of energetic states, and an insulator-to-metal transformation coupled to a change in chemical bonding. However, the thermobaric conditions of the fluid molecular-polymer phase boundary and associated metallization have not been experimentally established. Here, by applying dynamic laser heating of compressed nitrogen and using fast optical spectroscopy to study electronic properties, we observe a transformation from insulating (molecular) to conducting dense fluid nitrogen at temperatures that decrease with pressure and establish that metallization, and presumably fluid polymerization, occurs above 125 GPa at 2500 K. Our observations create a better understanding of the interplay between molecular dissociation, melting, and metallization revealing features that are common in simple molecular systems.
View Full Publication open_in_new
Abstract
Common particle characteristics needed for many applications may include size, eccentricity, porosity and refractive index. Determining such characteristics from scattered light is a primary goal of remote sensing. For other applications, like differentiating a hazardous particle from the natural background, information about higher fidelity particle characteristics may be required, including specific shape or chemical composition. While a complete characterization of a particle system from its scattered light through the inversion process remains unachievable, great strides have been made in providing information in the form of constraints on particle characteristics. Recent advances have been made in quantifying the characteristics of polydispersions of irregularly shaped particles by making comparisons of the light-scattering signals from model simulant particles. We show that when the refractive index is changed, the light-scattering characteristics from polydispersions of such particles behave monotonically over relatively large parameter ranges compared with those of monodisperse distributions of particles having regular shapes, like spheres, spheroids, etc. This allows for their properties to be interpolated, which results in a significant reduction of the computational load when performing inversions. Published by Elsevier Ltd.
View Full Publication open_in_new
Abstract
In their comment, Desjarlais et al. claim that a small temperature drop occurs after isentropic compression of fluid deuterium through the first-order insulator-metal transition. We show that their calculations do not correspond to the experimental thermodynamic path, and that thermodynamic integrations with parameters from first-principles calculations produce results in agreement with our original estimate of the temperature drop.
View Full Publication open_in_new
Abstract
Despite promising astrometric signals, to date there has been no success in direct imaging of a hypothesized third member of the Sirius system. Using the Clio instrument and MagAO adaptive optics system on the Magellan Clay 6.5 m telescope, we have obtained extensive imagery of Sirius through a vector apodizing phase plate (vAPP) coronagraph in a narrowband filter at 3.9 microns. The vAPP coronagraph and MagAO allow us to be sensitive to planets much less massive than the limits set by previous non-detections. However, analysis of these data presents challenges due to the target's brightness and unique characteristics of the instrument. We present a comparison of dimensionality reduction techniques to construct background illumination maps for the whole detector using the areas of the detector that are not dominated by starlight. Additionally, we describe a procedure for sub-pixel alignment of vAPP data using a physical-optics-based model of the coronagraphic PSF.
View Full Publication open_in_new
Abstract
We describe a new integrated optical spectroscopy facility for high-pressure research in materials research and mineral science located at the beamline BL01B of the Shanghai Synchrotron Radiation Facility. The system combines infrared synchrotron Fourier-Transform spectroscopy with broadband laser visible/near infrared and conventional laser Raman spectroscopy in one instrument. The system utilizes a custom-built microscope optics designed for a variety of diamond anvil cell experiments, which include low-temperature and ultrahigh pressure studies. We demonstrate the capabilities of the facility for studies of a variety of high-pressure phenomena such as phase and electronic transitions and chemical transformations.
View Full Publication open_in_new
Abstract
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm (230 GHz) observations of the HD 32297 and HD 61005 debris disks, two of the most iconic debris disks because of their dramatic swept-back wings seen in scattered light images. These observations achieve sensitivities of 14 and 13 mu Jy beam(-1) for HD. 32297 and HD. 61005, respectively, and provide the highest resolution images of these two systems at millimeter wavelengths to date. By adopting a Markov Chain Monte Carlo modeling approach, we determine that both disks are best described by a two-component model consisting of a broad (Delta R/R > 0.4) planetesimal belt with a rising surface density gradient and a steeply falling outer halo aligned with the scattered light disk. The inner and outer edges of the planetesimal belt are located at 78.5 +/- 8.1 au and 122 +/- 3 au for HD 32297, and 41.9 +/- 0.9 au and 67.0 +/- 0.5 au for HD 61005. The halos extend to 440 +/- 32 au and 188 +/- 8 au, respectively. We also detect (CO)-C-12 J = 2-1 gas emission from HD 32297 co-located with the dust continuum. These new ALMA images provide observational evidence that larger, millimeter-sized grains may also populate the extended halos of these two disks previously thought to only be composed of small, micron-sized grains. We discuss the implications of these results for potential shaping and sculpting mechanisms of asymmetric debris disks.
View Full Publication open_in_new
Abstract
The phase diagrams of Na2CO3 and K2CO3 have been determined with multianvil (MA) and diamond anvil cell (DAC) techniques. In MA experiments with heating, gamma-Na2CO3 is stable up to 12 GPa and above this pressure transforms to P6(3)/mcm-phase. At 26 GPa, Na2CO3-P6(3)/mcm transforms to the new phase with a diffraction pattern similar to that of the theoretically predicted Na2CO3-P21/m. On cold compression in DAC experiments, gamma-Na2CO3 is stable up to the maximum pressure reached of 25 GPa. K2CO3 shows a more complex sequence of phase transitions. Unlike gamma-Na2CO3, gamma-K2CO3 has a narrow stability field. At 3 GPa, K2CO3 presents in the form of the new phase, called K2CO3-III, which transforms into another new phase, K2CO3-IV, above 9 GPa. In the pressure range of 9-15 GPa, another new phase or the mixture of phases III and IV is observed. The diffraction pattern of K2CO3-IV has similarities with that of the theoretically predicted K2CO3-P2(1)/m and most of the diffraction peaks can be indexed with this structure. Water has a dramatic effect on the phase transitions of K2CO3. Reconstruction of the diffraction pattern of gamma-K2CO3 is observed at pressures of 0.5-3.1 GPa if the DAC is loaded on the air.
View Full Publication open_in_new
Abstract
The light scattered from dust grains in debris disks is typically modeled as compact spheres using the Lorenz-Mie theory or as porous spheres by incorporating an effective medium theory. In this work we examine the effect of incorporating a more realistic particle morphology on estimated radiation-pressure blowout sizes. To calculate the scattering and absorption cross-sections of irregularly shaped dust grains, we use the discrete dipole approximation. These cross-sections are necessary to calculate the beta-ratio, which determines whether dust grains can remain gravitationally bound to their star. We calculate blowout sizes for a range of stellar spectral types corresponding with stars known to host debris disks. As with compact spheres, more luminous stars blow out larger irregularly shaped dust grains. We also find that dust grain composition influences blowout size such that absorptive grains are more readily removed from the disk. Moreover, the difference between blowout sizes calculated assuming spherical particles versus particle morphologies more representative of real dust particles is compositionally dependent as well, with blowout size estimates diverging further for transparent grains. We find that the blowout sizes calculated have a strong dependence on the particle model used, with differences in the blowout size calculated being as large as an order of magnitude for particles of similar porosities.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 659
  • Page 660
  • Page 661
  • Page 662
  • Current page 663
  • Page 664
  • Page 665
  • Page 666
  • Page 667
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025