Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Large Binocular Telescope Interferometer (LBTI) enables nulling interferometric observations across the N band (8 to 13 mu m) to suppress a star's bright light and probe for faint circumstellar emission. We present and statistically analyze the results from the LBTI/Hunt for Observable Signatures of Terrestrial Systems survey for exozodiacal dust. By comparing our measurements to model predictions based on the solar zodiacal dust in the N band, we estimate a 1 sigma median sensitivity of 23 zodis times the solar system dust surface density in its habitable zone (HZ; 23 zodis) for early-type stars and 48 zodis for Sun-like stars, where 1 zodi is the surface density of HZ dust in the solar system. Of the 38 stars observed, 10 show significant excess. A clear correlation of our detections with the presence of cold dust in the systems was found, but none with the stellar spectral type or age. The majority of Sun-like stars have relatively low HZ dust levels (best-fit median: 3 zodis, 1 sigma upper limit: 9 zodis, 95% confidence: 27 zodis based on our N band measurements), while similar to 20% are significantly more dusty. The solar system's HZ dust content is consistent with being typical. Our median HZ dust level would not be a major limitation to the direct imaging search for Earth-like exoplanets, but more precise constraints are still required, in particular to evaluate the impact of exozodiacal dust for the spectroscopic characterization of imaged exo-Earth candidates.
View Full Publication open_in_new
Abstract
Polymeric nitrogen at 120 GPa-180 GPa is known in two monatomic crystalline cubic gauche (cg-N) and layered polymeric (LP-N) phases and one amorphous modification (eta -N), and all these high-pressure phases attract considerable attention for their potential application as a high energy density material. Here, we investigated the stability of these modifications at high pressures in the laser heated diamond anvil cell upon decompression from 161 GPa. Pure LP-N was synthesized above 152 GPa upon laser heating of eta -N to 2500 K, while cg-N forms below 150 GPa. Upon laser heating at 129 GPa and 123 GPa, the LP-N clearly diminished, indicating that the synthesis of cg-N becomes more favorable in a mixed phase region below 129 GPa. Upon unloading, cg-N and LP-N were metastable to at least 71 GPa at up to 2500 K and at room temperature, respectively. These observations clarified a complicated polymorphism of monatomic nitrogen at high pressures and large hysteretic phenomena related to a transition to nonmolecular nitrogen.
View Full Publication open_in_new
Abstract
As part of our search for new low-mass members of nearby young moving groups (YMGs), we discovered three low-mass, spectroscopic binaries, two of which are not kinematically associated with any known YMG. Using high-resolution optical spectroscopy, we measure the component and systemic radial velocities of the systems, as well as their lithium absorption and H alpha emission, both spectroscopic indicators of youth. One system (2MASS J02543316-5108313, M2.0+M3.0) we confirm as a member of the 40 Myr old Tuc-Hor moving group, but whose binarity was previously undetected. The second young binary (2MASS J08355977-3042306, K5.5+M1.5) is not a kinematic match to any known YMG, but each component exhibits lithium absorption and strong and wide H alpha emission indicative of active accretion, setting an upper age limit of 15 Myr. The third system (2MASS J10260210-4105537, M1.0+M3.0) has been hypothesized in the literature to be a member of the 10 Myr old TW Hya Association, but our measured systemic velocity shows the binary is in fact not part of any known YMG. This last system also has lithium absorption in each component, and has strong and variable H alpha emission, setting an upper age limit of 15 Myr based on the lithium detection.
View Full Publication open_in_new
Abstract
Raman and optical spectroscopy are versatile tools for nondestructive characterization of a wide range of properties of novel materials and minerals in situ at extreme and ambient conditions. These techniques are genuinely complementary to X-ray tools (diffraction and spectroscopy) in the probe energy, momentum transfer, and time scale, making concomitant X-ray and optical probes available for advanced sample analysis. We have built a state-of-the-art, user-friendly integrated Raman and optical spectroscopy system at Sector 13 (GeoSoilEnviroCARS, University of Chicago, IL) of the Advanced Photon Source (APS), Argonne National Laboratory (ANL), where optical probes are available now in combination with high resolution in-situ synchrotron X-ray diffraction and spectroscopy tools (XRD, IXS, XES, NFS, and others) for extensive sample investigation. The integrated optical system enables a variety of techniques including multi-colored (five laser lines: 266, 473, 532, 660, and 946 nm) confocal Raman, fluorescence, and optical spectroscopy from ultraviolet (UV) to near infrared (IR) spectral ranges (266-1600 nm), and Coherent Anti-Stokes Raman spectroscopy (CARS) in combination with near IR double sided laser heating.
View Full Publication open_in_new
Abstract
We quantitatively investigate the contribution of large dust particles to the polarimetric response in comets using the light-scattering properties of model agglomerated debris particles. We demonstrate that large, supermicron-sized particles have a decreasing role on the degree of linear polarization at phase angle alpha <= 80 degrees, and the effect of particles greater than 10 mu m is minimal. At larger phase angles, they may only slightly increase the measured percent of polarization by up to 1%. Omitting the effects of these particles in modeling the observations only slightly affects the retrievals of the microphysical properties of dust in comets and could lead to a small underestimation of the index in a power-law size distribution and population of weakly absorbing dust particles.
View Full Publication open_in_new
Abstract
X-ray synchrotron diffraction (XRD) measurements of single-crystal and powder molybdenum disulfide MoS2 are performed at pressures (P) up to 78 GPa and temperatures (T) of 20 to 298 K in diamond-anvil cells. The results on single crystals demonstrate a sharp pressure induced isosymmetric phase transition of 2H(c) to 2H(a) modification at 23 GPa at 40 and 300 K. The structure of the high-pressure 2H(a) phase previously inferred theoretically and from powder XRD data is confirmed by our single-crystal XRD data solution, which also definitively determines the atomic potions as a function of pressure. No additional periodicity (commensurate or incommensurate) or distortion is found in the whole P-T range of this study. These results suggest that a previously proposed hypothetic charge-density-wave phase does not host pressure induced superconductivity experimentally found above 90 GPa.
View Full Publication open_in_new
Abstract
We have obtained Gemini Planet Imager (GPI)J-,H-,K1-, andK2-Spec observations of the iconic debris ring around the young, main-sequence star HR 4796A. We applied several point-spread function (PSF) subtraction techniques to the observations (Mask-and-Interpolate, RDI-NMF, RDI-KLIP, and ADI-KLIP) to measure the geometric parameters and the scattering phase function for the disk. To understand the systematic errors associated with PSF subtraction, we also forward-modeled the observations using a Markov Chain Monte Carlo framework and a simple model for the disk. We found that measurements of the disk geometric parameters were robust, with all of our analyses yielding consistent results; however, measurements of the scattering phase function were challenging to reconstruct from PSF-subtracted images, despite extensive testing. As a result, we estimated the scattering phase function using disk modeling. We searched for a dependence of the scattering phase function with respect to the GPI filters but found none. We compared theH-band scattering phase function with that measured by Hubble Space Telescope STIS at visual wavelengths and discovered a blue color at small scattering angles and a red color at large scattering angles, consistent with predictions and laboratory measurements of large grains. Finally, we successfully modeled the SPHEREH2HR 4796A scattered phase function using a distribution of hollow spheres composed of silicates, carbon, and metallic iron.
View Full Publication open_in_new
Abstract
We report a new hydrogen clathrate hydrate synthesized at 1.2 GPa and 298 K documented by single-crystal x-ray diffraction, Raman spectroscopy, and first-principles calculations. The oxygen sublattice of the new clathrate hydrate matches that of ice II, while hydrogen molecules are in the ring cavities, which results in the trigonal R3c or R (3) over barc space group (proton ordered or disordered, respectively) and the composition of (H2O)(6)H-2. Raman spectroscopy and theoretical calculations reveal a hydrogen disordered nature of the new phase C-1', distinct from the well-known ordered C-1 clathrate, to which this new structure transforms upon compression and/or cooling. This new clathrate phase can be viewed as a realization of a disordered ice II, unobserved before, in contrast to all other ordered ice structures.
View Full Publication open_in_new
Abstract
Optical spectroscopic observations of white dwarf stars selected from catalogs based on the Gaia DR2 database reveal nine new gaseous debris disks that orbit single white dwarf stars, about a factor of 2 increase over the previously known sample. For each source we present gas emission lines identified and basic stellar parameters, including abundances for lines seen with low-resolution spectroscopy. Principle discoveries include (1) the coolest white dwarf (T-eff 12,720 K) with a gas disk; this star, WD0145+234, has been reported to have undergone a recent infrared outburst; (2) co-location in velocity space of gaseous emission from multiple elements, suggesting that different elements are well mixed; (3) highly asymmetric emission structures toward SDSS J0006+2858, and possibly asymmetric structures for two other systems; (4) an overall sample composed of approximately 25% DB and 75% DA white dwarfs, consistent with the overall distribution of primary atmospheric types found in the field population; and (5) never-before-seen emission lines from Na in the spectra of Gaia J0611-6931, semi-forbidden Mg, Ca, and Fe lines toward WD 0842+572, and Si in both stars. The currently known sample of gaseous debris disk systems is significantly skewed toward northern hemisphere stars, suggesting a dozen or so emission line stars are waiting to be found in the southern hemisphere.
View Full Publication open_in_new
Abstract
The thermal expansion at constant pressure of solid CD4 III is calculated for the low-temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region there is a giant peak of the negative thermal expansion. The height of this peak is comparable or even exceeds the thermal expansion of solid N-2, CO, O-2, or CH4 in their triple points. It is shown that like in the case of light methane, the effect of pressure is quite unusual: as evidenced from the pressure dependence of the thermodynamic Gruneisen parameter (which is negative and large in the absolute value), solid CD4 becomes increasingly quantum with rising pressure.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 661
  • Page 662
  • Page 663
  • Page 664
  • Current page 665
  • Page 666
  • Page 667
  • Page 668
  • Page 669
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025