Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Empirical constraints of fundamental properties of protoplanetary disks are essential for understanding planet formation and planetary properties(1,2). Carbon monoxide (CO) gas is often used to constrain disk properties(3). However, estimates show that the CO gas abundance in disks is depleted relative to expected values(4-7), and models of various disk processes impacting the CO abundance could not explain this depletion on observed -1Myr timescales(8-14). Here we demonstrate that surface energy effects on particles in disks, such as the Kelvin effect, that arise when ice heterogeneously nucleates onto an existing particle can efficiently trap CO in its ice phase. In previous ice formation models, CO gas was released when small ice-coated particles were lofted to warmed disk layers. Our model can reproduce the observed abundance, distribution and time evolution of gaseous CO in the four most studied protoplanetary disks(7). We constrain the solid and gaseous CO inventory at the midplane and disk diffusivities and resolve inconsistencies in estimates of the disk mass-three crucial parameters that control planetary formation.
View Full Publication open_in_new
Abstract
A seismic low velocity layer (LVL) above the mantle transition zone (MTZ), often thought to be caused by volatile-induced melting, can significantly modulate planetary volatile cycles. In this work, we show that an LVL observed beneath northeast Asia is characterized by small, 0.8 +/- 0.5 vol%, average degrees of partial melting. Seismically derived P-T conditions of the LVL indicate that slab-derived CO2, possibly combined with small amounts of H2O, is necessary to induce melting. Modeling the reactive infiltration instability of the melt in a stationary mantle above a stalled slab, we demonstrate that the volatile-rich melt slowly rises above the stalled slab in the MTZ, with percolation velocities of 200-500 mu m/yr. The melt remains stable within the LVL for this geologically significant period of time, potentially transferring up to 52 Mt/yr of CO2 from the subducting slab to the mantle for an LVL similar in areal extent (3.4x106km2) to the northeast Asian LVL. Reaction between the melt channels and the LVL mantle precipitates up to 200 ppmw solid C in localized zones. Using the inferred small melt volume fraction to model trace element abundances and isotopic signatures, we show that interaction between this melt and the surrounding mantle can over the long-term produce rocks bearing a HIMU like geochemical signature.
View Full Publication open_in_new
Abstract
The timing and processes that govern the end of volcanic eruptions are not yet fully understood, and there currently exists no systematic definition for the end of a volcanic eruption. Currently, end of eruption is established either by generic criteria (typically 90days after the end of visual signals of eruption) or criteria specific to a given volcano. We explore the application of supervised machine learning classification methods: Support Vector Machine, Logistic Regression, Random Forest and Gaussian Process Classifiers and define a decisiveness index D to evaluate the consistency of the classifications obtained by these models. We apply these methods to seismic time series from two volcanoes chosen because they display contrasting styles of eruption: Telica (Nicaragua) and Nevado del Ruiz (Colombia). We find that, for both volcanic systems, the end-date we obtain by classification of seismic data is 2-4 months later than end-dates defined by the last occurrence of visual eruption (such as ash emission). This finding is in agreement with previous, general definitions of eruption end and is consistent across models. Our classifications have a higher correspondence of eruptive activity with visual activity than with database records of eruption start and end. We analyze the relative importance of the different features of seismic activity used in our models (e.g. peak event amplitude, daily event counts) and find little consistency between the two volcanic systems in terms of the most important features which determine whether activity is eruptive or non-eruptive. These initial results look promising and our approach may offer a robust tool to help determine when an eruption has ended in the absence of visual confirmation. (C) 2020 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
High-energy X-ray and ultraviolet (UV) radiation from young stars impacts planetary atmospheric chemistry and mass loss. The active similar to 22 Myr M dwarf AU Mic hosts two exoplanets orbiting interior to its debris disk. Therefore, this system provides a unique opportunity to quantify the effects of stellar X-ray and UV irradiation on planetary atmospheres as a function of both age and orbital separation. In this paper, we present over 5 hr of far-UV (FUV) observations of AU Mic taken with the Cosmic Origins Spectrograph (COS; 1070-1360 angstrom) on the Hubble Space Telescope (HST). We provide an itemization of 120 emission features in the HST/COS FUV spectrum and quantify the flux contributions from formation temperatures ranging from 10(4) to 10(7) K. We detect 13 flares in the FUV white-light curve with energies ranging from 10(29) to 10(31) erg s. The majority of the energy in each of these flares is released from the transition region between the chromosphere and the corona. There is a 100x increase in flux at continuum wavelengths lambda < 1100 angstrom in each flare, which may be caused by thermal Bremsstrahlung emission. We calculate that the baseline atmospheric mass-loss rate for AU Mic b is similar to 10(8) g s(-1), although this rate can be as high as similar to 10(14) g s(-1) during flares with L-flare similar or equal to 10(33) erg s(-1). Finally, we model the transmission spectra for AU Mic b and c with a new panchromatic spectrum of AU Mic and motivate future JWST observations of these planets.
View Full Publication open_in_new
Abstract
We report ab initio atomistic simulations of hydrous silicate melts under deep upper mantle to shallow lower mantle conditions and use them to parameterise density and viscosity across the ternary system MgO-SiO2-H2O (MSH). On the basis of phase relations in the MSH system, primary hydrous partial melts of the mantle have 40-50 mol% H2O. Our results show that these melts will be positively buoyant at the upper and lower boundaries of the mantle transition zone except in very iron-rich compositions, where greater than or similar to 75% Mg is substituted by Fe. Hydrous partial melts will also be highly inviscid. Our results indicate that if melting occurs when wadsleyite transforms to olivine at 410 km, melts will be buoyant and ponding of melts is unexpected. Box models of mantle circulation incorporating the upward mobility of partial melts above and below the transition zone suggest that the upper mantle becomes efficiently hydrated at the expense of the transition zone such that large differences in H2O concentration between the upper mantle, transition zone and lower mantle are difficult to maintain on timescales of mantle recycling. The MORB source mantle with similar to 0.02-0.04 wt% H2O may be indicative of the H2O content of the transition zone and lower mantle, resulting in a bulk mantle H2O content of the order 0.5 to 1 ocean mass, which is consistent with geochemical constraints and estimates of subduction ingassing. (c) 2022 The Author(s). Published by Elsevier B.V.
View Full Publication open_in_new
Abstract
The observed atmospheric spectrum of exoplanets and brown dwarfs depends critically on the presence and distribution of atmospheric condensates. The Ackerman and Marley methodology for predicting the vertical distribution of condensate particles is widely used to study cloudy atmospheres and has recently been implemented in an open-source python package, Virga. The model relies upon input parameter f (sed), the sedimentation efficiency, which until now has been held constant. The relative simplicity of this model renders it useful for retrieval studies due to its rapidly attainable solutions. However, comparisons with more complex microphysical models such as CARMA have highlighted inconsistencies between the two approaches, namely that the cloud parameters needed for radiative transfer produced by Virga are dissimilar to those produced by CARMA. To address these discrepancies, we have extended the original Ackerman and Marley methodology in Virga to allow for non-constant f (sed) values, in particular, those that vary with altitude. We discuss one such parameterization and compare the cloud mass mixing ratio produced by Virga with constant and variable f (sed) profiles to that produced by CARMA. We find that the variable f (sed) formulation better captures the profile produced by CARMA with heterogeneous nucleation, yet performs comparatively to constant f (sed) for homogeneous nucleation. In general, Virga has the capacity to handle any f (sed) with an explicit anti-derivative, permitting a plethora of alternative cloud profiles that are otherwise unattainable by constant f (sed) values. The ensuing flexibility has the potential to better agree with increasingly complex models and observed data.
View Full Publication open_in_new
Abstract
Artisanal gold mining in Amazon forests and rivers has been reported in all Amazonian countries. Amazon mining has a wide range of negative effects and severe environmental and social consequences. Given that the activity in the region is mostly illegal, there are few studies published in the scientific literature on recovery of areas degraded by gold mining. This study conducts an experimental reforestation project aimed to evaluate soil degradation and explore the seedling survivorship and early growth of 51 tropical tree species in gold mined areas at 5 study sites distributed across the Madre de Dios region, in the Peruvian Amazon. The study evaluates the effect of biochar amendments on the survivorship and growth of 51 tropical species. The study also analyzes the influence of species wood density on seedling performance one year after planting. In order to inform further restoration plantation strategies, species were chosen with the end goals of timber production, biodiversity enhancement, and soil restoration. Site degradation, soil properties and mercury levels were analyzed in degraded areas and paired reference forest patches. Soils after gold mining are found to be highly degraded, with soil C being nearly absent, cation content greatly decreased, and loss of fine sediment. Soil mercury levels were found below national and international environmental quality standards. A positive correlation and a statistically significant relationship were found between survivorship and wood density. This reveals that the higher the wood density of the species, the higher the survival percentage. Growth and overall performance of mid, and especially low wood density species were significantly increased by biochar additions, while no effect was recorded on high wood density species growth. The study provides guidance on the post-ASGM restoration potential for 51 common and useful tree species and gives practitioners recommendations for combinations of species and fertilization treatments to optimize restoration designs.
View Full Publication open_in_new
Abstract
Tschauner et al. (Reports, 11 November 2021, p. 891) present evidence that diamond GRR-1507 formed in the lower mantle. Instead, the data support a much shallower origin in cold, subcratonic lithospheric mantle. X-ray diffraction data are well matched to phases common in microinclusion-bearing lithospheric diamonds. The calculated bulk inclusion composition is too imprecise to uniquely confirm CaSiO3 stoichiometry and is equally consistent with inclusions observed in other lithospheric diamonds.
View Full Publication open_in_new
Abstract
"Surges" in magma supply from the mantle can lead to significant changes in eruptive behavior, thus their early identification is critical to long-term eruption forecasting. Here, we document and analyze two order-of-magnitude increases in seismicity in the upper mantle beneath southern HawaiModified Letter Turned Commai between 2015 and 2020. We interpret the anomalous seismicity, which involved the rapid formation of new multiplets and a change in fault-plane solution orientations relative to pre-2015 events, as reflecting a substantial increase, or "surge" in mantle-derived magma, and we suggest that the intruded magma has been driving concurrent unrest at Mauna Loa, Kilauea, and LoModified Letter Turned Commaihi Volcanoes through mechanical stress transfer.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 550
  • Page 551
  • Page 552
  • Page 553
  • Current page 554
  • Page 555
  • Page 556
  • Page 557
  • Page 558
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025