Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The day and nightside temperatures of hot Jupiters are diagnostics of heat transport processes in their atmospheres. Recent observations have shown that the nightsides of hot Jupiters are a nearly constant 1100 K for a wide range of equilibrium temperatures (T (eq)), lower than those predicted by 3D global circulation models. Here we investigate the impact of nightside clouds on the observed nightside temperatures of hot Jupiters using an aerosol microphysics model. We find that silicates dominate the cloud composition, forming an optically thick cloud deck on the nightsides of all hot Jupiters with T (eq) <= 2100 K. The observed nightside temperature is thus controlled by the optical depth profile of the silicate cloud with respect to the temperature-pressure profile. As nightside temperatures increase with T (eq), the silicate cloud is pushed upward, forcing observations to probe cooler altitudes. The cloud vertical extent remains fairly constant due to competing impacts of increasing vertical mixing strength with T (eq) and higher rates of sedimentation at higher altitudes. These effects, combined with the intrinsically subtle increase of the nightside temperature with T (eq) due to decreasing radiative timescale at higher instellation levels, lead to low, constant nightside photospheric temperatures consistent with observations. Our results suggest a drastic reduction in the day-night temperature contrast when nightside clouds dissipate, with the nightside emission spectra transitioning from featureless to feature-rich. We also predict that cloud absorption features in the nightside emission spectra of hot Jupiters should reach >= 100 ppm, potentially observable with the James Webb Space Telescope.
View Full Publication open_in_new
Abstract
The "wet" silicate solidus of mantle peridotite defines the initial melting temperature of Earth's mantle under water-saturated conditions and the second critical endpoint (SCEP) marks the high P-T end of the wet solidus. However, the location of the wet solidus has remained an outstanding issue for over 50 years and the position of the SCEP is hotly debated. Published wet solidi show a difference of 200-600 degrees C at a given pressure while reported SCEPs range from <4 to >6 GPa. Using a large-volume multianvil apparatus, we investigated the water-saturated melting behavior of a fertile peridotite at 3-6 GPa, 950-1200 degrees C, and obtained well-preserved quenched materials. On the basis of textures and compositions of the quenched materials, we bracket the wet solidus to between 950 degrees C and 1000 degrees C at 3 GPa and the SCEP between 3 and 4 GPa. Combining our experimental results with seismologic and petrologic observations, we propose that the lithosphere-asthenosphere boundary in subduction zones should be constrained by the wet solidus and emphasize the role of a deep hydrous partial-melting zone (DHPMZ) on magma genesis within the mantle wedge. We suggest that the DHPMZ is a source of hydrous melts to the primary melting zone in the mantle wedge and that the position of the volcanic front and its magma production rate may largely be controlled by melting and melt segregation processes within the DHPMZ. Our experimental results also suggest that high-magnesian magmas (e.g., boninite, picrite, and komatiite) could be formed at conditions representative of subduction zones.
View Full Publication open_in_new
Abstract
Optical secondary eclipse measurements made by Kepler reveal a diverse set of geometric albedos for hot Jupiters with equilibrium temperatures between 1550 and 1700 K. The presence or absence of high-altitude condensates, such as Mg2SiO4, Fe, Al2O3, and TiO2, can significantly alter optical albedos, but these clouds are expected to be confined to localized regions in the atmospheres of these tidally locked planets. Here, we present 3D general circulation models and corresponding cloud and albedo maps for six hot Jupiters with measured optical albedos in this temperature range. We find that the observed optical albedos of K2-31b and K2-107b are best matched by either cloud-free models or models with relatively compact cloud layers, while Kepler-8b's and Kepler-17b's optical albedos can be matched by moderately extended (f(sed) = 0.1) parametric cloud models. HATS-11b has a high optical albedo, corresponding to models with bright Mg2SiO4 clouds extending to very low pressures (f(sed) = 0.03). We are unable to reproduce Kepler-7b's high albedo, as our models predict that the dayside will be dominated by dark Al2O3 clouds at most longitudes. We compare our parametric cloud model with a microphysical cloud model. We find that even after accounting for the 3D thermal structure, no single cloud model can explain the full range of observed albedos within the sample. We conclude that a better knowledge of the vertical mixing profiles, cloud radiative feedback, cloud condensate properties, and atmospheric metallicities is needed in order to explain the unexpected diversity of albedos in this temperature range.
View Full Publication open_in_new
Abstract
Water clouds are expected to form on Y dwarfs and giant planets with equilibrium temperatures near or below that of Earth, drastically altering their atmospheric compositions and their albedos and thermal emission spectra. Here we use the 1D Community Aerosol and Radiation Model for Atmospheres (CARMA) to investigate the microphysics of water clouds on cool substellar worlds to constrain their typical particle sizes and vertical extent, taking into consideration nucleation and condensation, which have not been considered in detail for water clouds in H/He atmospheres. We compute a small grid of Y-dwarf and temperate giant-exoplanet atmosphere models with water clouds forming through homogeneous nucleation and heterogeneous nucleation on cloud condensation nuclei composed of meteoritic dust, organic photochemical hazes, and upwelled potassium chloride cloud particles. We present comparisons with the Ackerman & Marley parameterization of cloud physics to extract the optimal sedimentation efficiency parameter (f (sed)) using Virga. We find that no Virga model replicates the CARMA water clouds exactly and that a transition in f (sed) occurs from the base of the cloud to the cloud top. Furthermore, we generate simulated thermal emission and geometric albedo spectra and find large, wavelength-dependent differences between the CARMA and Virga models, with different gas absorption bands reacting differently to the different cloud distributions and particularly large differences in the M band. Therefore, constraining the vertically dependent properties of water clouds will be essential to estimate the gas abundances in these atmospheres.
View Full Publication open_in_new
Abstract
High pressure-temperature experiments provide information on the phase diagrams and physical characteristics of matter at extreme conditions and offer a synthesis pathway for novel materials with useful properties. Experiments recreating the conditions of planetary interiors provide important constraints on the physical properties of constituent phases and are key to developing models of planetary processes and interpreting geophysical observations. The laser-heated diamond anvil cell (DAC) is currently the only technique capable of routinely accessing the Earth's lower-mantle geotherm for experiments on non-metallic samples, but large temperature uncertainties and poor temperature stability limit the accuracy of measured data and prohibits analyses requiring long acquisition times. We have developed a novel internal resistive heating (IRH) technique for the DAC and demonstrate stable heating of non-metallic samples up to 3000 K and 64 GPa, as confirmed by in situ synchrotron x-ray diffraction and simultaneous spectroradiometric temperature measurement. The temperature generated in our IRH-DAC can be precisely controlled and is extremely stable, with less than 20 K variation over several hours without any user intervention, resulting in temperature uncertainties an order of magnitude smaller than those in typical laser-heating experiments. Our IRH-DAC design, with its simple geometry, provides a new and highly accessible tool for investigating materials at extreme conditions. It is well suited for the rapid collection of high-resolution P-V-T data, precise demarcation of phase boundaries, and experiments requiring long acquisition times at high temperature. Our IRH technique is ideally placed to exploit the move toward coherent nano-focused x-ray beams at next-generation synchrotron sources. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
View Full Publication open_in_new
Abstract
Volcanoes produce widely varying seismic signals due to the presence of complex and non-linear physical processes. The temporal distribution of seismicity at volcanoes ranges from individual transients to swarms of many small events and protracted volcanic tremor. The spectral range of volcanic signals is unequivocally broadband, with coincident high (>20 Hz) and very low (down to periods of hundreds of seconds) frequency signals frequently observed at many volcanic systems. As such, interpretations of volcano-seismic source and process require suitable characterisation in the time-frequency (T-F) domain. The adoption of automated approaches to routine seismic processing at volcanoes also creates the need to evaluate how we suitably extract discriminatory features of interest from such diverse volcano-seismic signals.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 548
  • Page 549
  • Page 550
  • Page 551
  • Current page 552
  • Page 553
  • Page 554
  • Page 555
  • Page 556
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025