Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Previous work has shown that Mo isotopes measurably fractionate between metal and silicate liquids, even at temperatures appropriate for core formation. However, the effect of variations in the structural environment of Mo in the silicate liquid, especially as a function of valence state, on Mo isotope fractionation remained poorly explored. We have investigated the role of valence state in metal-silicate experiments in a gas-controlled furnace at 1400 degrees C and at oxygen fugacities between 10(-12.7) and 10(-9.9), i.e. between three and 0.2 log units below the iron-wustite buffer. Two sets of experiments were performed, both with a silicate liquid in the CaO-Al2O3-SiO2 system. One set used molybdenum metal wire loops as the metal source, the other liquid gold alloyed with 2.5 wt % Mo contained in silica glass tubes. X-ray absorption near-edge spectroscopy analysis indicates that Mo6+/Sigma Mo in the silicate glasses varies between 0.24 and 0.77 at oxygen fugacities of 10-(12.0) and 10(-9.9) in the wire loop experiments and between 0.15 and 0.48 at 10(-11.4) and 10(-9.9) in the experiments with Au-Mo alloys. Double spiked analysis of Mo isotope compositions furthermore shows that Mo isotope fractionation between metal and silicate is a linear function of Mo6+/Sigma Mo in the silicate glasses, with a difference of 0.51 parts per thousand in Mo-98/Mo-95 between purely Mo4+-bearing and purely Mo6+-bearing silicate liquid. The former is octahedrally and the latter tetrahedrally coordinated. Our study implies that previous experimental work contained a mixture of Mo4+ and Mo6+ species in the silicate liquid. Our refined parameterisation for Mo isotope fractionation between metal and silicate can be described as
View Full Publication open_in_new
Abstract
The Alaska Volcano Observatory (AVO) monitors volcanoes in Alaska and issues notifications and warnings of volcanic unrest and eruption. We evaluate the timeliness and accuracy of eruption forecasts for 53 eruptions at 20 volcanoes, beginning with Mount Redoubt's 1989-1990 eruption. Successful forecasts are defined as those where AVO issued a formal warning before eruption onset. These warning notifications are now part of AVO's Aviation Color Code and Volcanic Alert Level. This analysis considers only the start of an eruption, although many eruptions have multiple phases of activity. For the 21 eruptions at volcanoes with functioning local seismic networks, AVO has high forecasting success at volcanoes with: >15 years repose intervals and magmatic eruptions (4 out of 4, 100%); or larger eruptions (Volcanic Explosivity Index (VEI) 3 or greater; 6 out of 10, 60%). Therefore, AVO successfully forecast all four monitored, longer-repose period, VEI 3+ eruptions: Redoubt 1989-1990 and 2009, Spurr 1992, and Augustine 2005-2006. For volcanoes with functioning seismic monitoring networks, success rates are lower for: volcanoes with shorter repose periods (3 out of 16, 19%); more mafic compositions (3 out of 18, 17%); or smaller eruption size (VEI 2 or less, 1 out of 11, 9%). These eruptions (Okmok, Pavlof, Veniaminof, and Shishaldin) often lack detectable precursory signals. For 32 eruptions at volcanoes without functioning local seismic networks, the forecasting success rate is much lower (2, 6%; Kasatochi 2008 and Shishaldin 2014). For remote volcanoes where the main hazard is to aviation, rapid detection is a goal in the absence of in situ monitoring. Eruption detection has improved in recent years, shown by a decrease in the time between eruption onset and notification. Even limited seismic monitoring can detect precursory activity at volcanoes with certain characteristics (intermediate composition, longer repose times, larger eruptions), but difficulty persists in detecting subtle precursory activity at frequently active volcanoes with more mafic compositions. This suggests that volcano-specific characteristics should be considered when designing monitoring programs and evaluating forecasting success. More proximally-located sensors and data types are likely needed to forecast eruptive activity at frequently-active, moremafic volcanoes that generally produce smaller eruptions.
View Full Publication open_in_new
Abstract
We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2-M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (approximate to 25-150 Myr) moving groups, the young field star epsilon. Eridani, and 18 nearby (< 25 pc) low-mass stars and achieved typical single-measurement precisions of 8-15 m s(-1) with a long-term stability of 15-50 m s(-1) over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as similar to 25-50 m s(-1) at approximate to 2.3125 mu m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ. 876. bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD. 160934. AB and GJ. 725. AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3s-5s. Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of. 5 m s(-1) in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.
View Full Publication open_in_new
Abstract
In this article, the specification and application of the new double-sided YAG laser-heating system built on beamline I15 at Diamond Light Source are presented. This system, combined with diamond anvil cell and X-ray diffraction techniques, allows in situ and ex situ characterization of material properties at extremes of pressure and temperature. In order to demonstrate the reliability and stability of this experimental setup over a wide range of pressure and temperature, a case study was performed and the phase diagram of lead was investigated up to 80GPa and 3300K. The obtained results agree with previously published experimental and theoretical data, underlining the quality and reliability of the installed setup.
View Full Publication open_in_new
Abstract
An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.
View Full Publication open_in_new
Abstract
Volcanic eruptions occur when a conduit forms to connect a crustal magma reservoir to Earth's surface. Conduit formation is generally assumed to be a 'bottom up' process and a major driver of precursory volcanic seismicity, which is the most commonly monitored parameter at volcanoes worldwide. If both assumptions are true, initial precursory seismicity should coincide spatially with petrologically-estimated magma reservoir depths. A review of six well-constrained case studies of arc volcanoes that erupt after repose intervals of decades indicates that, to the contrary, initial precursory seismicity is consistently several kilometers shallower than the magma reservoir. We propose a model involving a three-phase process of unrest and eruption: initial (partial) conduit formation occurs during a 'staging' phase, either aseismically or long before the onset of the immediate precursory run-up to eruption. Staging may involve slow ascent rates and/or small volumes. A destabilization phase then coincides with the onset of precursory seismicity, leading to a 'tapping' phase that involves additional magma ascent from the magma reservoir. This model implies that, most critically, it may be possible to detect precursory magma ascent well before the onset of seismic activity by continuous monitoring of the state of stress in the mid to shallow crust.
View Full Publication open_in_new
Abstract
Given that low-mass stars have intrinsically low luminosities at optical wavelengths and a propensity for stellar activity, it is advantageous for radial velocity (RV) surveys of these objects to use near-infrared (NIR) wavelengths. In this work, we describe and test a novel RV extraction pipeline dedicated to retrieving RVs from low-mass stars using NIR spectra taken by the CSHELL spectrograph at the NASA Infrared Telescope Facility, where a methane isotopologue gas cell is used for wavelength calibration. The pipeline minimizes the residuals between the observations and a spectral model composed of templates for the target star, the gas cell, and atmospheric telluric absorption; models of the line-spread function, continuum curvature, and sinusoidal fringing; and a parameterization of the wavelength solution. The stellar template is derived iteratively from the science observations themselves without a need for separate observations dedicated to retrieving it. Despite limitations from CSHELL's narrow wavelength range and instrumental systematics, we are able to (1) obtain an RV precision of 35 m s(-1) for the RV standard star GJ 15 A over a time baseline of 817 days, reaching the photon noise limit for our attained signal-to-noise ratio; (2) achieve similar to 3 m s(-1) RV precision for the M giant SV Peg over a baseline of several days and confirm its long-term RV trend due to stellar pulsations, as well as obtain nightly noise floors of similar to 2-6 m s(-1); and (3) show that our data are consistent with the known masses, periods, and orbital eccentricities of the two most massive planets orbiting GJ 876. Future applications of our pipeline to RV surveys using the next generation of NIR spectrographs, such as iSHELL, will enable the potential detection of super-Earths and mini-Neptunes in the habitable zones of M dwarfs.
View Full Publication open_in_new
Abstract
We report on laser-heated diamond anvil cell (LHDAC) experiments in the FeO-MgO-SiO2-CO2 (FMSC) and CaO-MgO-SiO2-CO2 (CMSC) systems at lower mantle pressures designed to test for decarbonation and diamond forming reactions. Sub-solidus phase relations based on synthesis experiments are reported in the pressure range of similar to 35 to 90 GPa at temperatures of similar to 1600 to 2200 K. Ternary bulk compositions comprised of mixtures of carbonate and silica are constructed such that decarbonation reactions produce non-ternary phases (e.g. bridgmanite, Ca-perovskite, diamond, CO2-V), and synchrotron X-ray diffraction and micro-Raman spectroscopy are used to identify the appearance of reaction products. We find that carbonate phases in these two systems react with silica to form bridgmanite +/- Ca-perovskite + CO2 at pressures in the range of similar to 40 to 70 GPa and 1600 to 1900 K in decarbonation reactions with negative Clapeyron slopes. Our results show that decarbonation reactions form an impenetrable barrier to subduction of carbonate in oceanic crust to depths in the mantle greater than similar to 1500 km. We also identify carbonate and CO2-V dissociation reactions that form diamond plus oxygen. On the basis of the observed decarbonation reactions we predict that the ultimate fate of carbonate in oceanic crust subducted into the deep lower mantle is in the form of refractory diamond in the deepest lower mantle along a slab geotherm and throughout the lower mantle along a mantle geotherm. Diamond produced in oceanic crust by subsolidus decarbonation is refractory and immobile and can be stored at the base of the mantle over long timescales, potentially returning to the surface in OIB magmas associated with deep mantle plumes. (C) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 546
  • Page 547
  • Page 548
  • Page 549
  • Current page 550
  • Page 551
  • Page 552
  • Page 553
  • Page 554
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025