Abstract
Hydrothermal fluids enriched in hydrocarbons of apparent abiotic origin vent from Fe-Ni sulfide bearing chimney structures on the seafloor at slow spreading mid-ocean ridges. Here we show results from a hydrothermal experiment using carbon isotope labeling techniques and mineral analytical data that indicate that pentlandite ((Fe2Ni7)S-8) enhances formation of C-2 and C-3 alkanes, while also contributing to the formation of other more complex hydrocarbons, such as alcohols and carboxylic acids. ToF-SIMS data reveal the existence of isotopically anomalous carbon on the pentlandite surface, and thus, for the first time, provide unambiguous evidence that mineral catalyzed surface reactions play a role in carbon reduction schemes under hydrothermal conditions. We hypothesize that hydroxymethylene (-CHOH) serves as intermediary facilitating formation of more complex organic compounds. The experimental results provide an explanation for organic synthesis in ultramafic-hosted hydrothermal systems on earth, and on other water-enriched planetary bodies as well.