Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Rainbow in front of a dam wall. Shot in Hazelmere Dam Nature Reserve, near Durban, North Coast of Kwazulu-Natal, South Africa.
June 13, 2024
Press Release

Planning African hydropower to balance energy needs, climate impacts, and ecosystem health

Abstract
The structure of communities is influenced by many ecological and evolutionary processes, but the way these manifest in classic biodiversity patterns often remains unclear. Here we aim to distinguish the ecological footprint of selection-through competition or environmental filtering-from that of neutral processes that are invariant to species identity. We build on existing Massive Eco-evolutionary Synthesis Simulations (MESS), which uses information from three biodiversity axes-species abundances, genetic diversity, and trait variation-to distinguish between mechanistic processes. To correctly detect and characterise competition, we add a new and more realistic form of competition that explicitly compares the traits of each pair of individuals. Our results are qualitatively different to those of previous work in which competition is based on the distance of each individual's trait to the community mean. We find that our new form of competition is easier to identify in empirical data compared to the alternatives. This is especially true when trait data are available and used in the inference procedure. Our findings hint that signatures in empirical data previously attributed to neutrality may in fact be the result of pairwise-acting selective forces. We conclude that gathering more different types of data, together with more advanced mechanistic models and inference as done here, could be the key to unravelling the mechanisms of community assembly and question the relative roles of neutral and selective processes.
open_in_new
Abstract
Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.
open_in_new
Abstract
Cell polarity is used to guide asymmetric divisions and create morphologically diverse cells. We find that two oppositely oriented cortical polarity domains present during the asymmetric divisions in the Arabidopsis stomatal lineage are reconfigured into polar domains marking ventral (pore -forming) and outward -facing domains of maturing stomatal guard cells. Proteins that define these opposing polarity domains were used as baits in miniTurboID-based proximity labeling. Among differentially enriched proteins, we find kinases, putative microtubule-interacting proteins, and polar SOSEKIs with their effector ANGUSTIFOLIA. Using AI -facilitated protein structure prediction models, we identify potential protein -protein interaction interfaces among them. Functional and localization analyses of the polarity protein OPL2 and its putative interaction partners suggest a positive interaction with mitotic microtubules and a role in cytokinesis. This combination of proteomics and structural modeling with live -cell imaging provides insights into how polarity is rewired in different cell types and cell -cycle stages.
open_in_new
Abstract
Accurate and continuous maps of maize distribution are essential for food security and sustainable agricultural development. However, there are no continuous national-scale and fine-resolution maize maps and explicit updated information on the spatiotemporal dynamics of maize for most countries. Maize mapping at the national scale is challenging due to the spectral heterogeneity caused by crop growth conditions, cropping patterns, and inter-annual variations. To this end, this study developed a novel crop index-based algorithm for national-scale maize mapping. Compared to other crops, maize is characterized by large-leaf-dominated canopies and high photosynthetic efficiency. Maize shows significant changes in chlorophyll and anthocyanin content. Therefore, a robust maize index was established by exploring the temporal Variation of the Vegetation-Pigment index (VVP) during the growing period. A simple decision rule was coded on the Google Earth Engine (GEE) platform, which was used for maize mapping based on the Sentinel-2 time series in China and the contiguous United States (US) from 2018 to 2022. The national-scale 10 m annual maize maps for China and the contiguous US were developed and in good agreement with the corresponding agricultural statistics data for many years (R-2 > 0.94) and 9,412 reference points (overall accuracy of 90.09 %). Compared with simply applying the vegetation index, the VVP index took account of spectral heterogeneity caused by variations in crop growth conditions, cropping patterns, and inter-annual, and the omission error of maize was reduced by over 20 %. Moreover, the VVP index can significantly improve the spatial transferability of the Random Forest (RF) classifier. The first 10 m annual maize maps for China revealed that the planted area trend decreased and then increased from 2018 to 2022. The year 2020 was the turning point. The maize planted area consisted of 68 % single maize and 32 % double cropping with maize in 2020, with the northern boundary for double cropping with maize in the Yanshan Mountains. The maize planted area in China consistently decreased by 39,352 km(2) (about 9 %) from 2018 to 2020. This is mainly due to the adjustment of the maize-planted structure in the "Sickle Bend" region of China (the "Sickle Bend" policy). However, the maize planted area gradually recovered from 2020 to 2022, primarily concentrated in regions with ever-planted. This study will provide essential information for cropping structure adjustment and related agricultural policy formulation and contribute to sustainable agricultural development by mapping maize from a national to a global scale.
open_in_new
Abstract
There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built - in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built - environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well - being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life - altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human - associated diseases. Sustained trans - disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.
open_in_new
Abstract
Alka(e)nes are produced by many living organisms and exhibit diverse physiological roles, reflecting a high functional versatility. Alka(e)nes serve as waterproof wax in plants, communicating pheromones for insects, and microbial signaling molecules in some bacteria. Although alka(e)nes have been found in cyanobacteria and algal chloroplasts, their importance for photosynthetic membranes has remained elusive. In this study, we investigated the consequences of the absence of alka(e)nes on membrane lipid composition and photosynthesis using the cyanobacterium Synechocystis PCC6803 as a model organism. By following the dynamics of membrane lipids and the photosynthetic performance in strains defected and altered in alka(e)ne biosynthesis, we show that drastic changes in the glycerolipid contents occur in the absence of alka(e)nes, including a decrease in the membrane carotenoid content, a decrease in some digalactosyldiacylglycerol (DGDG) species and a parallel increase in monogalactosyldiacylglycerol (MGDG) species. These changes are associated with a higher susceptibility of photosynthesis and growth to high light in alka(e)ne-deficient strains. All these phenotypes are reversed by expressing an algal photoenzyme producing alka(e)nes from fatty acids. Therefore, alkenes, despite their low abundance, are an essential component of the lipid composition of membranes. The profound remodeling of lipid composition that results from their absence suggests that they play an important role in one or more membrane properties in cyanobacteria. Moreover, the lipid compensatory mechanism observed is not sufficient to restore normal functioning of the photosynthetic membranes, particularly under high light intensity. We conclude that alka(e)nes play a crucial role in maintaining lipid homeostasis of thylakoid membranes, thereby contributing to the proper functioning of photosynthesis, particularly under elevated light intensities.
open_in_new
Jara Späte

Jara Späte

Visiting Student

Vincent Scholz

Vincent Scholz

Visiting Scholar

Portrait photo of José Peltroche

José Avila Peltroche

Postdoctoral Fellow

Pagination

  • Previous page chevron_left
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025